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lhe_paper investigates msthods for applying an on-line interactive 
vtnlication system derigned to prove properties or PASCAL programs. 
The methodology is  intended to provide  techniques for developing a 
debugged and verified version startin,: from a program,  that  (a)  is 
possibly unfinished in some respects,   (b) may not  satisfy the given 
specmcations,   e.g., may contain bugs,   (c) may have incomplete 
documentation,   (d) may be written in non-standard ways,  e.g.. may 
depend on user-defined data structures. 

The methodology  involves  (i) interactive application of a verification 
condition generator,   an algebraic  simplifier and a theorem-prcver; 
Uij   techniques for describing data structures,   type constraints, 
and properties of programs and subprograms  (i.e.  lower level procedures); 
[Hi     the use of  (abstract) data types  in structuring programs and 
proofs. 

Within each unit   (i.e.   segment of a problem),   the interactive use is 
aimea at reducing verification conditions to manageable proportions 
so that  the non-trivial factors may be analysed.    Analysis of 
verification conditions attempts to localize errors  in the program 
logic,   to extend assertions inside the program,   to spotlight additional 
assumptions  on program subfunctions   (beyond those already specified 
oy the programmer),   and to generate appropriate lemmas that allow a 
verification to be completed.    Methods  for structuring correctness 
proofs are discussed that are similar  to those of "structured programming-, 

A detailed case  study of a pattern matching algorithm illustrating the 
various aspects of the methodology   (including the role played by the 
user)   is given. 
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AUTOMATIC PROGRAM VERIFICATION III: 

A METHODOLOGY FOR VERIFYING PROGRAMS 

F.W. v.HENKE and D.C. LUCKHAM 

ABSTRACT 

The paper Investigates methods for applying an on-line Interactive verification system designed to 
prove properties of PASCAL programs. The methodology is intended to provide techniques for 
developing a debugged and verified version starting from a program, that (a) is possibly 
unfinished in some respects, (b) may not satisfy the given specifications, e.g.. may contain bugs, 
(c) may have incomplete documentation, (d) may be written in non-standard ways. eg., may 

depend on user- defined data structures. 

The methodology Involves (i) interactive application of a verification condition generator, an 
algebraic slmplifier and a theorem-prover; (ii) techniques for describing data structures, type 
constraints, and properties of programs and subprograms (i.e. lower level procedure;), (hi) the 
use of (abstract) data types in structuring programs and proofs 

Within each unit (i e segment of a problem), the Interactive use is aimed zt reducing verification 
conditions to manageable proportions so hat the non-trlvlal factors may be analysed. Analysis of 
verification conditions attempts to localir1 errors in the program logic, to extend assertions inside 
the program, to spotlight additional assumptions on program subfunctions (beyond those already 
specified by the progi ammer), and to generate appropriate lemmas that allow a verification to be 
completed. Methods for structuring correctness proofs are discussed that are similar to those of 
"structured programming" 

A detailed case study of a pattern matching algorithm Illustrating the various aspects of the 
methodology (including the role played by the user) is given. 
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I INTRODUCTION 

A METHODOLOCV FOR VERIFYING PROGRAMS 

I  INTRODUCTION 

We are concerned here with the question of whether or not program verification systems that are 
curien'ly hemg developerl have any practical usefulness Verifications of simple standard 
programs have heen ohtamed with these systems (See for example. [King and Floyd], 
[Igarashi.l -ndon and Luckham], [Deutsch], (Good and Ragland], [FKpas, Levitt,and Waldm^er]! 
[Suzuki], [Boyei ind Moote]) The^e trsults ptovide encourageni'nt to explore further. But, m 
all cases except foi one exampe m [Moialrs] the programs wert Known in advance to be correct 
- re provably comistent with their documentation Moieover, ttiCie example test programs are 
based on standaid well known functions and data structures (for the most part, either Integer 
arithmetic or veiy simple hst piocessmg) Realistically practical verification problems have «rt to 
be faced A methodology for using these systems to construct verifications in real life situations ha« 
not been developed, and indeed the question of whether the; will help the process of writing and 
verifyt'-.g; programs or will merely "get in the way" is entirely open 

The goal ot practical u etulness does not imply that !he venfication of a program must be made 
independent of creative effort on the part of the programmer. As we shall see later, such a 
lequirement is utterly unrealistic What we have to do is to provide a tool (the venhcation 
system) and instructions for its use (rhe nethodnlogy) that can sometimes enable a programmer to 
gain a degree of certainty about his or other people's programs The tool and methods must be 
easy to apply In short, we seek to extend the programmer's repertoire of techniques, not to 
replace it 

The verification system discussed here has been developed specifically for proc"-jm$ written in 
PASCAL [Wirth] and is an extension (see [Suzuki]) of the system described in [ILL] The 
puipose of this system is to aid the progiammer m constructing a proof that his program satisfies 
its documentation Such a proof (m the logic of programs [Hoare 71, ILL]) Is called a verification 
of the program    The ciocumenta'' n may incliidp 

1 input output spetifuitions, 
2 properties of certain ciuual internal states, 
3.   specificanons and propeities of subprograms, 
4   specifications of data structuies 

In order to he useful m piactice we must develop a methodology for using the verifier which aids 
the usej in situations where 

1. the  documentation   is   incomplete  de.    additional   facts   about   the   program   must   be 
discovered before a venfication can be found), 

2. the program itself is unfinished 'eg (L./S of it may be unwntten), 
3. the program is badly wntten (even though it conforms to structuring principles), 
4   the data itructures are non standaid (eg   an axiomtrir desciption does not already exist). 

What "aid" should one expect fiom a verification system' A verification proof depends upon a set 
of assumptions or lemmas about components of the program (sub procedures, dat?. structures, 
library routines, etc ) Let us call this a BASIS for a verification. Essentially, a verification basis is 
a set of consequences of an underlying axiomtization of the data structures and subroutines, 
although such an axiomatization may not actually be known Different proofs have different bast:. 

—   ■ ^^■■■■■M^^MHMM 



 >   > i        «immmmmminm 

v HENKE and LUCKHAM 

A verification is convincing to a programmer only if he "believes" the basis in the rather 
imprecise sense that its statements reem true; a more precise sense (acceptable) is given below. As 
we shai! show in examples, a programmer can obtain a verification of his r;rogram using a 
verifier, and be faced with an impressively complex basis, (or even worse, with some systems he 
might end up without knowing the basis at all) If he does not believe the basis, he must be able 
to reduce its eiemrnts to moie believable statements or else search for an alternative basis. Thus 
verification methodology must 

1. establish that .« basis is adequate, (it. ensure the existence of a corrrectness proof from the 

basis), 
2. present altnnative bases to the programmer, (i.e.   help him discover bases and improve 

documental mnX 
3. include methods for analyzing a basis and reducing its components to other bases 

There is an undn lying motivational assumption here: m dealing with real life problems it may 
ofien be unrealistic and impractical to attempt a verification directly from first principles. It is 
sufficient to establish a verification basis that is clearly implied by an axiomatic semantics for 
those concepts that are used in the piogiam 

However, in the case of a "new" program s. h semantics may not have been formulated. 
Consequently, we ne-ed a methodology which permits a verification to proceed by developing a 
hierarchy of bases in which a basis at one level verifies elements of the basis immediately above it 
and depends on bases at the level immediately below The development of this hierarchy can be 
viewed as "discovering" the semantics; it will usually be guided by the structure of the program. A 
basis for verifying properties of one level of the program will be formulated in terms of concepts 
used in writing that level The statements in the lowest level bases should be already established 
facts (about nonprimitives) of axioms for the semantics of primitive functions and ^ta structures. 
Apart from the practical need to divide complicated verifications into subproofs which may be 
attempted individually, this hieraiclilcal idea has other advantages. It allows a verification to 
proceed hand-in-hand with the writing of the ptogram A basis is to be viewed as more than just 
a set of assumptions for a verification Often it includes additional necessary prope ties of 
unwritten MbrautUwi beyond what was in then original specifications Alternatively, the omission 
of a specification might indicate that a simpler subtoutii;r will suffice. Thus, a basis for one level 
of a program is a sufficient set ot specifications for the next level. Secondly, if an axiomatic 
semantics for new concepts is needed, it is probably best developed from a knowledge of adequate 
verification bases (consisting of simple statements) for programs using those concepts. Thirdly, the 
problem of getting differing programmers to agree upon a "verification" of a program can be 
terminated short of a complete reduction of the problem to first principles if they both have 
confidence in the acceptability of some intermediate basis 

At 'his point we can be a little more precise about some of ;he concepts we have Introduced: 
A Ml of statements forms a   basis   for verifying a property of a program if a proof of that 

property can be given within the logic ^f programs [Hoare 71. ILL] which assumes (i.e depends 
upon) only those statements.  For emphasis, we shall sometimes say that such  a basis  is 
adequate 

A basis is   acceptable   if (1) all of its statements about the primitives (drta structures and 
library routines) are true, and (11) programs can be constructed to satisfy all of those statements 
that contain names for uncoded subroutines. 

 •.       ■ ■ ■ ---' ■— - ■—————-- ■— -^ »- 
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INTRODUCTION 

The primary probhw li to find accrpi^hlp venficanon bases There are a number of important 
secondary problems. Th^r can all he r.^gorizeci as parts of the "Formallzation problem" First 
there is the question of what doainuntation to include with the program for example which 
internal states need to br clcscnb-d, which invariant properties of a loop nerd to be stated and 
what properties of subroutines are ictunlly necessary Secondly, how should the documentation 

be expressed? This involves the choice of representation of concepts (eg should the relation "C" 
on the integers be used CM can all the necessary facts be expressed in terms of a derived concept 
like 'S ORDEKKD SET"?) Also the programme! must choose whether to express internal 
propeMies of the program by purely "static" assemons about the values of its variables or by 
defining ex'..a computations and making assertions about new -anables de the technique of 
introducing "ghost" variables and "virtual" program [Clint]). Thirdly, how should the program 
be written in order to make its verification possible Recent developments in programmine 
language design, pretty much resulting from expenence with the debugging problem such as 
block structure and lestnctiom on procedure parameters and global variables, all certainly help 
However, many other details in a program influence its verification (eg the form of data structure 
definitions should indicate clearly the assumptions that can be made about the structures) At the 
moment, these secondary problems are areas where the programmer's Ingenuity must be applied 
It is to be hoped that verification methodology will eventually develop some relevant cuidelines 
for attacking the formalizatlon problem • 

Our methodology can be very roughly outlined as follows A program level, which may contain 
calls to uncoded lowe, level subtoutmev IS submitted together w,ih some documentation to the 
verification system The general methodology divides activity into three phases MoffflM the 
code, constricling inductivr assertions, and constructing a basis . At each of these pnases the 
s>stem is used to indicate modifications and changes by means of a methodology depending on 
aiw.Iysis of verifiration conditions (see Section 2.4) (Eventually we intend to incorporate other 
techniques (or analysing programs) Modified problems are resubmitted for further analysis In 
the third phase the system provides a test for the adequacy of a proposed basis Finally the basis 
must be shown to be acceptably which involves writing the next level of the prooram. 

We shall show  n Section ? how the Pascal Verifier can be used interactively to verify leve's in a 
program   as   tney   ate   written   r.nd   to  guide  writing  subsequent   levels     We   illustrate   the 
methodology m action in an experiment to write and verify a program lor a fundamental pattern 
matching algonthrr (Unification)   We have tried to keep our pmentaUm as close to the real life 
sequence of cvems as possible without too much repetition    Essentially, we present snapshots of 
this sequence of -vents, each snapshot illustrating a different situation which the mcthodoloev 
must   handle    The.e   are   examples  of  the use of  the   verifier   to  find   bugs,   to  augment 
documentation, to build up a basis, and to analyze the basis (i e.   reduce It to simpler statements) 
This last pomt involves choosing a formalism for defining recursive data structures, and here we 
have   adopted   with   minor   modifications  some  suggestions   of   [Hoare   T\]    Of   course   our 
methodology is far frcm compete, and mnn, of the problems that arise during a verification 
(except for the jdequacy of a basis, which i. handled automatically by the system) involve the 
user in making choices and decisions   It .s already clear how to automate some of this work 
However, we must emphasize that the verifier is intended for use m conjunction with other 
programming facilities . J 

Some parts of the general methodology depend on a knowledge of what the components of the 
verifier do. We have, ther fore, included a brief description of the verifier in Section 2 lenthtr 
with a simple example of its use -S*1"*« 

■ ■ ■  "—■—           - - -     -^ 
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T^e principle references upon which this paper depends are [Hoare 71] and (ILL] (for the logic 
programs). [Hoare and Wirth) (for axiomatic semantics of Pascal), ano [ILL] and EStttUkt] (for 
details of the verifier) We shall use concepts and notation from [Hoare 71, ILL] without dennlcion. 

2.  THE VERIFIER 

The Pascal verification system is represented in outline in Figure I. The logical theory and 
Implementation of the Verification Condition Generator (VCC) is given In [ILL], and details of 
the slmpllher ars in [Suzuki] In section 3 we shall describe Interactive use of this system th^t 
relies mainly on these two components and, at the moment, only employs the theorem prover when 
everything else fails Heie we give a very brief sketch of VCG and the simplifier with the 
intention of mentioning inst those details that affect the Methodology of Section 3. 

INPUT 
PROGRAM 

and       >| 
DCCUflENTATION 

I 

nOOIFIEL" 

I     VCG      | |   SinPUFIER     | jTHEOREn   | 
>   | | >   |   PROVER   | 

I 
v 

PROBLEM 

  I 
lANALYSiS  OF  OUTP'JT   |<---| 

Figure I:   Main Coiiipoiients of the Verifier 

2.1 VERIFICATION CONDITION GENERATOR (VCG) The input to VCG is a verification 
problem of the form P(A|<^ where P and O are entry and exit specifications (called assertions) for 
a Pascal prOfTMn A The program A may ifelf contain additional documentation Figure 2 
shows an input to VCG (Ogfttor wnh some extia rtocumrntation (explained later) To verify that 
A satisfies its specifications, we require thai a proof of PjA|<^ within the logic of programs be 
found VCG reduces problems of the form P{A10,to problems about shorter programs, using the 
rule- of the axiomatic semantics of Pascal For example, P{IF L THEN B ELSE CJQ^could be 
reduced to verifying two problems, PALJB}«^ and PA-L(C}<^ the axiomatic semantics for 
conditional statements implies that if these latter two preMtlWI are verified then the first problem 
is also verified Similar reductions are applied to other kinds of Pascal statements. The final 
oui^-tt rom VCG is a set of purely logical statements composed from Pascal Boolean assertions 
(see Figure 3) These are called the Verification Conditions (abbreviated to VC's) for the original 
problem, PjAjQ. 

- t^a^^m 
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There are two points to be mentionod here. First of all, VCC has a completeness property with 
respect to provability. Assume that a verification of PIAjQ^ is to be found making only 
assumptions from some underlying axiomatic semantics, T say. A proof of PfAjC^can always be 
constructed assuming the VC's, and conversely if P{A}Qjs provable in the logic of programs 
from T, then VCG will generate VC's that are provable in T provided A contains additional 
helpful assertions (exactly what extra documentation must be given is a subject of much current 
research). This means that the set of VC's is always an adequate Basis for the verification (but it 
may not be acceptable) And also, if the user's problem is provable from statements In T, he will 
be able to establish that fact with the present verifier by adding enough documentation to the 
program. The second point is that VCG reduces problems to purely logical VC's. As we shall see 
later, this may not always be the best stra'egy, especially when the VC's involve the names of 
procedures that have yet to be written, and it may sometimes be better to stop the reduction 
process and generate VC's that contain pieces of code explicitly. It Is doubtful If verification can 
be based solely on pure logic, and it may be necessary to use other techniques such as equivalence 
preserving transformations on programs 

Finally, the present version of VCG contains a number of new features and rules that are not in 
the original version in [ILL]. The one most relevant to our discussion is a feature (due to Suzuki) 
for handling calls to uncoded functions by means of "DEFFUN" stal.ments. The Intention is to 
give the user an easy way to stat? specifications for functions that are not yet coded, although It 
can be used for standard functions as well   A DEFFUN statement is of the form: 

DEFFUN 
ENTRY 

f(x I type 1,...): type ttxitypei....;: type 
R(xl,...);   EXIT  <Value>:S(f); 

where f is the function name. <value> is an expression denoting the value of f, and R(xl,...) tnd 
S(xl,...) are entry and exit assertions No function body is required. Whenever a call to f occurs 
during the generation of VC's the adaptation rule [Hoare] will be apulied: 

P{A)(R(a...) A V(a,,...XS(f(a'....))^f(a'....))) 

PjA;x^f(a,...)lQ^x) 

A verification of the program will then imply the runtime legality of all calls to f. The use of 
DEFFUN'S Is not mandatory, and the user may choose to omit them if he Is sure thar all his 
function calls are legal (a normal compile-tlme type check may be sufficient) 

2.2 THE SIMPLIFIER Many VC's are (or contain subformulas that are) lengthy and 
complicated but turn out to be logically trivial. The first step in the analysis of VC's h to s'mplify 
and eliminate the trivial parts so that one can see the •■eal verification proolems. It is 
Inappropriate to process these unsimplified VC's with the theorem prover because there are faster, 
less general techniques for carrying out logical and algebraic formula reduction. VC's are first 
processed by a simplifier. Originally, we had planned the simplifier as a pi-processor to the 
theorem prover, but our current methodology nakes repeated interactive use of the simplifier 
before using the prover (See Figure I) 
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Let us first state vny burfiy what the simplificr does (Full details In [Suzuki]). The user mar; 
submit three kinds of documentation statements which will be used as reduction rules by the 
slmplifiei    Here are (XMnpfes of each: 

AXIOM     CAR(CONS(<»\.1»Y))«X, 

This means that any term in a VC (hat "matches" the left side (re. Is Identical to the left side 
when X and Y are replaced ijy appropriat« strings) will be replaced in the VC by the string for 
X    It is a left to right reduction rule.  A variable preceded by "a" is called a pattern variable. 

AXIOM    IFISTERMLIST(LML-ZERO)THEN  ISTERM(HD(9L))«TRUE 

This is a conditional axiom Suppose a VC has the form A-»B. Any expression In B that 
matches ISTERM(HD(i»L)) may be reduced by this rule to TRUE If ISTERMLIST(L) and 

-■(L-ZERO) (where L is the substitution string for eL m the successful match) occur In A. 

GOAL    RCONS((.XI,»VI)-RCONS((»X2.9Y2)   SUB   (XI - X2)A(YI - Y2) 

This is a goal statrmont. It is treated as a reduction rule that says "an expvesslon that matches the 
GOAL may be replaced hy TRUE if the corresponding instance of the SUBgoal can be reduced 
to TRUE 

Figure 2 shows a program with documentation that will be used as simplification rules. 

Goal statements can be formulated as conditional axioms and vice versa. The difference Is that 
axioms are "sticky" (any reduction by an axiom is never reversed) whereas goals are not (goals 
have no effect on a VC unless the reduction can be pushed all the way to TRUE), Ideally, the 
axioms should consist of those reduction rules having the property that no reduction to TRUE 
depends on their order of application. 

The simplifier contains a sequence of simplifying "boxes" An incoming VC Is slmpllfitd In 
sequence by (I) a logical ptoposition simplifier, (2) processing of arithmetical expressions by choice 
of standard forms and by evaluation, (?) reduction by axioms, and (4) reduction by goals. 

This is a good place to discuss the role of the simplifier In our verification methodology. 
Essentially, we are using the simplifier as a fast theorem prover Our philosophy Is that the user 
should be able to submit a problem and receive back the reduced VC's within a few seconds. If 
the kinds of redurnnn mles are easily understood, he will probably be able to see further useful 
ruks by analyzing the VC's He can then resubmit the pioblem with additional rules Eventually 
some of this analysis will he automated (See Section ?) and likely rules suggested to the user. 
There is no ac^mpt to male the set of rules logically mdependant at first, the idea being to 
develop a first basis quickly It does make sense to choose simple rules(believablllty). and some 
kinds of rules (eg rommutativity) have to be excluded because of the way the slmpllfer works. If 
all VC's reduce to TRUE, the srt of reduction rules is an adequate verification basis. 

The kinds of reduction rules have to be simple also for speed as well as understandabillty. 

- - -   ■ ——      ■  "-  - --  ----- 
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However, experienre suggests that we do need something beyond algebraic manipulation. The 
goal statements form a simple theorem prover On the other hand, some complex propositional 
transformations are time consuming ;ind often unneeded, and best left to the theorem prover. 
Thus the boarderlme between Simplification and Theorem-proving, at the moment, is somewhat 
pragmatic. 

2.3 AN EXAMPLE Figure 2 shows the procedure SIFTUP used in the algorithm TREESORT3 
[Floyd] for sorting linear arrays of integers. The problem is to verify that the output of SIFTUP 
is always a permutation of its input The program contains an internal ASSERTION as well as 
the entry and exit conditions for this problem 

There are three reduction rules stated in terms of tfu. relation PERMUTATION (A.B) meaning 
"array A is a permuation of array B", and the functioi, ASET(A,i,j) which applies A[i]«-j to A. 
We may have no specific axiomatic theory of permutations in mind. Nevertheless, the first two 
AXIOMS are clearly trivial Most people will "believe" the third one after a moments thought. 

The unsimplified VC's put out by VCG are in Figure 3. So also are the simplified ones, from 
which we conclude that the three rules are an adequate basis for verifying the permutation 
property. The reader.mav wonder how we thought of the third rule. What we did was to run the 
problem first without it and compare the premiss and conclusion of VCt3 or «4. 

AXIOM PERMUTATIONIOI.TOIMRUE; 
AXIOM ASET(«ll,«i2,nll(rcl2)Hl; 
AXIOM PERMUTATION!ASET(ASET(«8l 1 ,«8l2,Ql 1 [OI3]),OI3,OI4),BII5)» 

PERMUTATIONIASETdl ,I2,I4),I5>; 

PROCEDURE SIFTUP(IO,N:INTEGER); 
ENTRY M«M0; 
EXIT   PERMUTATIONIM.MO); 
VAR COPY:REAL; J, hlNTEGERj 
BEGIN 

I - 10; COPY - M[l]; 
10: J - 2 * I; 

ASSERT PERMUTATIONIASETCM.I.CGPYKMO); 
IF J < N THEN 
BEGIN IF J < N THEN 

BEGIN IF M[>1] > M[J] THEN J * >l END; 
IF M[J) > COPY THEN BEGIN M[l] •- MtJ]; 1 •■ J; GO TO 10    END; 
END; 
M[l] ♦- COPY» 

END; 

Figure 2: The procedure SIFTUP used by TREESORT. 

 ^ , _.,_  _ ■_..,..    
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• I 
M=MO -» PERMUTATIONIASfTiM.IO.MflOD.MO) 
• 2 

(COPY<M[J. 1 ])A(M[J]<M[J. I ])A(J<N)A(J<N)APERMUTATION(ASET(M,I1COPY).MO) 
-♦PERMUTATION(ASET(ASET(M,l(M[J.|]),J.|,COPY),MO) 

• 3 

(COPV<M[J))A.(M[J]<M[J. I ])A(J<N)A(J<N)APERMUTATION|ASET(M.I.CC?Y) MO) 
-► PERMUTATION(ASET(ASET(M,lpM[J]).J,COPY),M0) 

• 4 

(COPY<M[J])A-(J<N)A(J<M)APERMUTATION(ASET(M,IICOPY),MO) 
-»PERMUTATION(ASET(ASET(M,l,M[JJ)1J,COPY).M0) 

■ 5 
MCOPY<M[J» I ])A(M[J]<M[> I ))A(J<N)A(J<N)Ar ERMUTATIONIASEKM.I.COPY) MO) 

-» PERMUTATION(ASET(M(I.COPY) MO) 
• 6 
-(COPY<M[J))AMMIJ]<M[J.|])A(J<N)A(J<N)ArERMUTATION(.ASET(M.l.COPY)MO) 

-» PERMUTATIONIASEKM.I.COPYj.MO) 
• 7 

MCOPY^M[J])A.|J<N)A(J<N)APERMUT,'; TIONiASET^ .I.COPY) MO) 
-• PERMUTATIONIASETCM.I.COP '),MO) 

■ 8 
•'(J<N)APERMUTATIOi\,(ASFT(u>iicOf /j.MO) -• PERMU1 ATIOWASEKM.I.COPYJ.MÜ) 

THE SIMPLIFIED VERIFICATION CONDITIONS ARE: 

• 1 TRUE 
• 2 TRUE 
• 3 TRUE 
• 4 TRUE 
• 5 TRUE 
• 6 TRUE 
■ 7 TRUE 
• 8 TRIE 

TIME: 7 :PU SECS, 31 ^EAL SECS 

Figure 3:   VERIFICATION CONDITIONS FOR SIFTUP 

- ■     ■■ 
—fc—^^——^        -   
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24 HINTS ON ANALYSING VC'S. luh VC corresponds to a path through the program 
between two assertions (possibly the same assertion) A simple VC has the form P-»Q<y where 
Q is the end asset lion, P is a logical combination of the beginning assertion and boolean control 
tests, and o^ Is a substitution of terns for program variables If the path contains function or 
procedure calls, the form of the VC is more complex The VC expresses a logical condition on 
the action of the program along the path It also contains implicitly a description of the path and 
what ihe action is 

(a) The path of a VC is determined by the values of the boolean control tests occur mg In P. 
(b) The  cor putatloial changes can  be determined  from  terms  substituted   for  program 

variables by «y. 

EXAMPLE; VC4 (figure ?) corresponds to the path from the ASSERTION satisfying JCN. 
-><J<N),and M[j]>COPV back to the ASSERTION The action of oc (determined from the Q 
part of VC4) Is M^ASET(M,I.M[J]) (i.e. M[\]-M[}]), and I-J The assignment }*-2-\ cannot be 
detected unless ASSERTION contains J 

Our methodoloey depends on extracting information from VC's. When a VC does not reduce to 
TRUE, IM pmgrammer may try to decide if it is true using his knowledge of the program (i.e. the 
path and action) if it is true, he can either expand P (I.e. the beginning assertion) or give 
irtditional documentation in order ro prove the VC Additional documentation can be given by 
placing iiew MMHiiptiQnS in the basis If the VC appears to be false, he has either to weaken the 
specifications vcnangir^ P or Qj or to change the program 

Commonly occuimg situations include the following 
(I).   Paths of VC's coiiespond with cases the program is supposed to recognize. Any kind of 

mismatch of cases and paths indicates a change should be made in the program. 
Cll). The action of a VC does not express what   he program was intended to do in the case 

corresponding to the VC path A change in the program is necessary (see 3.1 (bMc)). 
(Hi) Part of Qjs logically 1. dependant of P Then usually P should be expanded (see 3.1(a) 

and (d)) 
(Iv), The VC appear.« tne but not provable from the the current Basis.   Analysis of the 

components of Q ind related parts of P can often yield conditions on  functions and 
procedures which were overlooked or were omitted because their relevence was questioned. 
These may then be added to the Basis (see 3.3 a,b,c) 

How much of this analysis and corrective action can be automated ? Most of the current attempts 
to automate the construction of assertions (especially in case (in)) assume that the program Is 
i Iready correct. If we do not assume correctness, it seems that the choice of action ( whether to 
change the documentation or the program) depends entirely on the programmer's Intentions and 
cannot be automated, however, much can be done to automate the extraction of Information 
from VC's. The sysf m helps by displaying the (updated) effe-:» of any changes and allowing 
experimentation 

■ fciMtii   i ii    ' ^--      - - - - '    - ■  "— - - — ■--—' - "■■'           - -   -    -- -        ■      --     ■ ■ ■- -        .^-...L^-^-.- 
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3. CASE STUDY: METHODOLOGY IN ACTION 

Let us first explain unification informally   A umficat.on praynin accepts as input two lists of 
terms X.Y and constructs as output a subst.tut.on (of terms for variables) that makes each mmber 

^MPOS^BLE" t COrrTndlng mmber 0f Y  ,f P0",b,e- or ^ outpu"    he TnTw 
iSÄ'iU'Ä^^ V-{f,(h(uU(w)P,vl. the pr0g

$
ra

e
m

r 

It is possible to write such first-order unification programs In many different ways    A «- 

We asked an experienced programmer to wnte a un.ftcation proßram in real time r»kil. u,« 
looked on)    We note the foiiow.ng    He stated his intention to^s^thT i^put da     'rictu e " 
temporary storage, but no structures were declared.   He attempted to codePlp down"  nam.n^ 

changed HU T ^ ^^ bUt ^ ^ What ****** ™PP™* to'do (but'he of"n changed his m.nd). As the program developed, he had d.fficulty documentme the loon and 
introduced virtual program to do tfm (without telling us)   He eave up on   he iri« o . 
Iterative code and ended up putt.ng a recurs.ve call insL a WHILE loopP PUrely 

It is this program that we start with as VERSION  I.   We make no claim thar i, » u 
un.ficat.on program should be coded.  We choose it because .t is the resul       a 1  e  .tuaUon 
and ., a problem of suffic.ent nchness to be a good test of our ideas on methodology 

tlrmirsu v'ln^v6 T'^ '' ^ '[ ? PT0&im ^ '^ " 0UtPu» a *** Z of the input 
LVTlrln . ? i 0TUtS a fa,,Ure 0,her Jiandard (and ^Plementary) properties thawM 
MTZÜL**    " Z " a m0$t genera, Un,fier- and ,hat if J fai,Urc '$ -'put'then X^d^Y 

I!? T 'r9'. Pr0gIaT l$ deVe,0ped In three S,ePS: vmion ' (a first A*«»X a debugged version 2 
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II CASE STUDY 

Thp subfunctlom 
TSUBST(X.Z)    • 
SLI[sST(\,Z) 
ZERO 
COMP(Z.\,Y)    ■ 

OCCUR(X.Y) 
RCONS(U.X)     • 
TERMS(X) 
FNLT(X) 
HD(X). TUX)    ■ 

iispd in the program have the following intended meanings: 
the term resulting from applying substitution Z to term X, 
the tetmlist muking from applying substitution Z to termlist X, 
the empty list, 
the  substitution   resulting  from composing  substitution   Z   with   the  single 
substitution that replaces variable X by term Y, 
a Boolean test.TRUE whenever term X is a subterm of term V 
termlist obtained by adding term X to the end of termlist U, 
the termlist consist of the arguments of term X (not a simple variable), 
the function letter of complex rfrm X, 
the head and tail of list X 

3.1 VERSION I: DFHIK.CING AND EXTENDING DOCUMENTATION. Version I is the top 
level of the profrSffl that was initially submitted for verification It was written almrv: on-line anH 

therefore tontams bugl and even misconceptions of the structure of algorithm and data Roughly 
speaking i is a sketch of a progiam with the question "can this be made to work?" It does not 
mciude any specifications of the data types (in form of axioms, deffuns etc.) The Invariant of the 
mam loop consists just of the mam idea the initial parts of the termlists X and Y are unified by 
tlie cori:'ructed substiumon Z. To express Ihll the programmer used two "ghost variables" [Clint] 
U and V, which hold the parts already dealt with, and "virtual program", ie., statments that are 
not necessary for the actual computation Failure of the algorithm is expressed by the pseudo- 
procedure LOSE 
Note that the progiam contains several     gs: 
- the cases structure is mcoirect, 
- after the recursive call cf UNIFY the result is not tested for success or failure and the returned 

substitution is not assigned to Z, 
- at the end of the procedur it is not guaranteed that both XI and YI are ZERO. 

.     .  .-^. — 
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PASCAL 
PROCEDURE UNIFY|X.Y:TERMLIST;ZI:SUB; VAR 7:SUB); 

ENTRY ISTERMLIST(X)AI3TERMLIST(Y); 

EXIT   (SUBST(X,2).SUBST(Y,Z))   v L0SE(X,Y); 

VAR U.V.Xl.YI-.TERMLIST; VAR X2)Y2:TERMi VAR Z2:SUB; 
BEGIN 

1. Initialization of variables 7. 
U:-2ER0; Vr-ZERO; Z:.Zl; XI:.X; Yh-Y; 

INVARIANT (SUBST(U,Z)«SUBSTlV,Z)) " L0S£(X,Y) 

WHILE (XI/ZERO) A (YI/ZERO) 00 
BEGIN 
X2:- SUBST(HD(X1),Z); 
Y2:- SUBST(H0(YI),Z); 
IF ISVAR(X2) THEN      BEGIN  IF ISVARIY2) THEN Z:«COiv4P(Z,X2,Y2); 

IF 0CCUR{X21Y2) THEN LCSE(X,Y) 
ELSE Z:.COMP(Z,X2,Y2) 

END 
ELSE   BEGIN  IF ISVAR(Y2) 

THEN   BEGIN  IF OCCUR(Y2,X2) THEN L0SE(X,Y; 
ELSE Z:.COMP(Z,Y2,X2) 

END 
ELSE     BEGIN   IF FNLT{X2)»FNLT(Y2) 

THEN UNIFY{TERMS(X2)1TERMS(Y2), Z,Z2) 
ELSE L0SE(X,Y) 

END 
END; 

U :»RCONS(U,HD(XI));   V :.RC0NS(V,HD(Y1)); 
X1:.TL(X1);   YI:«TL(YI); 
END; 7. End of WHILE body 7. 

I 

END; 7. Procedure body 7. 

Figure 4: Version I 

  III««I«II 
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LOSr. NOT FOUND 

• J 
(ISTERMLIST(Y) ft ISTERMLIST(X) & L0SE(X,Y) v SUBST(Uill2il).SUBST(Vt|,Zin ft 
"YI^I-ZEROä -XIt).ZERO 

-♦ LOSE(X,Y) v iUBST(Y,2«l).SUBST(X,2«l)) 

• 3 
(LOSE(X,Y) v SUBST(U,Z)«SUBST(V,Z) ft -YLZERO ft -Xl-ZERO ft 
-ISVMR(SUBST(HO{XI),Z))ft 
'ISVAR(SUBST(HDM ),2)) ft FNLKSUBSTCHOtYD.Z))- rNLT(SUBST(HD(Xl ),Z)) 

-♦ I5TERMUST(TERMS(SUBST(HD(YI),Z))) ft 
(LOSE(TERMS(SUBST(HD(XI)1Z)).TERMS(SUBSr(H'j(YI)1Z)))v 
SUBST(TERMS(SUBST(HD(YI),Z)).Z2«l).SUBST.fERMS(SUBST(HO(Xl),Z)),Z2«l) 

-* LOSEOC.Y) v SUBSTCRCONS^.HDIXDJ.Z^SUriSTCRCONSlV.HC ruu))« 
ISTtRMLIST(TERMS(SUBST(HD(X I ),Z)))) 

• 9 
(LOSE(X.v) v SUBST(U12).SUBST(V1Z) ft -YLZERO ft 'Xl-ZERO ft 
ISVAR'SUBST<HD(X1),Z))» 
ISVAR{SUBST(HD(Y1),Z)) ft 0CCUR(SUBST(HD(Xi),Z),SUBST|H0(YI)f2)) 

-» PRE.LOSE(X,Y) * (RES.LOSEIX.Y) 
-♦   LOSE(X,Y) v 

SUBST(RrONS(U,HD(XI)),C0MP(Z.<>UBr.T(Ht!'Xl )1Z),SIJBST(H0(YI ),Z))) 
■SUBST(RCONS(V,HD(Yl )),C0MP(Z,SUBST(HO(XI ),Z),SUBST(HD(Yi ),Z))))) 

Figure 5: Some VC'$ for version I in simplified form 

   _ ^ 
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Ph7nr?rnd,ng t0 ' i' "^ f uny de,:,,,ed ,nfo,mat,on- the »y«em is not able to simplify more fhan the most trivial parts of the grnerated VC's P    r 

Discussion of the problems involved in version I: 

a) Failure Handling: Trying to define pre- and post-conditions for the missing procedure LOSE 
as required by the sysrern. the programmer realizes that indication of failure Is a chan« of the 
state rather than an act on to be invoked (a direct way to put .cross an error message eg In forn 
o a jump to the ,op ;,VP, ., not available in Pascal) Thus, he should use a b^lea^ var aS . 
FLAG whose vr.iK will indicate success or failure Accordingly, the r ocedure UNIFY eet$ on« 
more variable ptrMMWr. sue; that it returns the value of FLAG together with a new valL nf ' 
Each call to LOSE is to he replaced by FLAG.0. and t.e .ni.al va'lue of FLAG v HI b' , Th^ 
LXIT aisertion must be changed to specify the use of FLAG: 

EXIT ( SUBST(X.Z).SUBST(Y.Z) A FLAG-1) v FLAG-0 

An equal   nange oust be made in the INVARIANT (If the INVARIANT is not changed  the 

s^V S^alon 2'oii) "^ "" '" ^ ^ " ** ^ *** ^ the ,00P * ^^1 

b) Missing Code: The necessity to update the value of Z after the recursive call to UNIFY can be 
detected by analysing VC? The relevant parts are 

-ISVAR(SUBST(HD(X l).Z)) fc -ISVAR(SUBST(Hb(VI)Z)) Sc 

^N;'J^Br(HD'YI)Z))"FNLT(SUBST(HD(XI>Z))frSUBST(U>Z)-SLBST(VZ) 

- SUBSTtRCONS(U.HD(XI)).Z).SUBST(RCONS(V.HD(YI)).Z) u^lWWV 

VC.3 as It stands is not provable (there are obvious counterexamples). The first two lines 
indicate that it corresponds to the path containing the procedure call UNIFY(,..Z2) The oumose 
of this call is to extend Z to a substitution 22 that unifies the pair HD(XI! and HD(YI) as weM I 
U and V^ Indeed, the occurences of Z in the last line of VC? should be Z2.I The final value 
of Z at the end of the path should t» the value of Z2 returned by UNIFY if the attemo ed 
unification succeeds Thus the action on .he path is not what was Intended, and the c^le must be 
changed- Section 2 <(..) The correct action can be achieved by adding 

IFFLAG-I THEN Z-Z2; 

Immediately after the cal 

ogrammer notices the 
c) Error in the Case Analysis: VC.9 is of the form P^O^R)  The 
combination of Boolean tests 

ISVAR(A)AISVAR(B)AOCCUR(A.B) 

in part P. This means that VC.9 eypresses a condition on the action of the program alone the 
path corresponding to this combination U cases   This action can be deduced from O and Rg  he 
procedure    LOSE   is  called,  and   the  substitution   Z  Is  updated   to  COM^Z C D)   Thi! 

MM mmt _ - MaHaMMMMMHii 
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combination of actions is clearly wrong, indeed, the programmer's intention in this case is that the 
program should do nothing to Z and contmue-another example of Section 24(ii). This error Is 

fixed by adding an e-.tra IF statement for the case ISVAR(X2)/VISVAR(Y2)A(X2^Y2) (see figure 
6) 

d) Expansion of the INVARIANT: To snte the invariant of the loop, the programmer 
introduced the variables U and V which are ir."ended to hold the values for the initial parts of 
the termhsts X and Y From looking at VC«I he can see that 

(1) SUBST(U,Z).SUBST(V,Z) 

has to Imply 

(2) SUBST(X,Z)-SU3ST(Y.Z) 

when control leaves the loop, re when XI-ZERO and Yl-ZERO, and the algorithm is successful. 
This is impossible un><$ some relationship between U,V and X.Y respectively is given - an 
example of Section 2 4(III)   Now, tn<. intended relationship is 

(3) APPEND(U,XI)-X A APPEND(V.Vi)-Y 

where APPEND is the standard LISP function. The question is, where should th<s be added to 
the d-Kumentation' Further analysis of VC«I shows that the only possible place is the invariant 
of the loop (the other parts of the VC derive from entry and exit condition and the loop control 
test)   The obvious properties if APPEND 

(4) APPEND(ZERO,L)-L        APPEND(L,ZERO)-L 

will be assumed as axiom?, ^uarantpping that (?) vill be true when entering and leaving the loop. 
Then (I) will imply (2), provided both XI and YI equal ZERO at the end. On the next run with 
the (wo axioms on APPEND addrd, the omission of a corresponding test after leaving the loop 
«A-'II be visible in the VC, so a statement 

IF (XICZEROW (Yl-ZERO) THEN FLAG-O; 

is added at the end of the procedme 

REMARK The programmer could as well try to figure out what other properties of APPEND 
are required to prove invanance of the invariant around the loop, but he leaves that to the 
system as he hopes to find what is needed from the VC's of a subsequent run (refer to Section 3 3 
b)   Note that the function APPEND is used only in the documentation. 

e) Use of Ghost Variables and Virtual Program: As a data flow analysis would show, the 
variables U and V ate not necessary to compute the final result. They are needed only to express 
the invariant of the main loop Therefore they are called "ghost variables" (Clint]. Obviously, 
assignments to ghost variables need not be executed at run time nor translated by a compiler 
Thus these statement» arc considered "virtual"; their purpose is to ensure the correct current 
values of the ghost variables as the computation proceeds. 

- — 
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The tpchniqu» of using ghost variables and pieces of virtual program fot documemation purposes 
is very '.iseful And quite common Although they often could be eliminated as part of the program 
text - especially in the context cf arithmetical problems where most operat ons are invertible - they 
represent a powerful tool Whethf a programmer chooses virtual program or not depends on his 
preferences and the problem domain In our example, U and V could be replaced In the 
Invariant by expressions like EXCLUDE(X l,X) meaning the remaining lnit<al list after chopping 
off X I from the right end of X In this way, EXCLUDE becomes sort of an inverse function of 
APPEND However, we preki .he virtual program approach since it MprttMS clearer the 
building-up of the values of U ^ncl V simultaneously with the other compi .iion, beside that, the 
axioms and goals involving the equalities S'JE,;T(U,...)-SUBST(V....) are compllcaied ever 
without the d'fficulties added by the use of EXCLUDE, as will be seen later. 

3.2 DATA TYPES AND TVPE CHECKING For program verificailon, data type definitions 
represent sets of axioms defining the semantics of the types They are primitive statements in the 
verification basis This i« usually called the "abstract" definition of a data type. A handy formalism 
is needed that permits the programmer to define his types without having to write down all the 
axioms explicitly. The unification program here uses recursive types, we adopt the following 
formalism for defining recursive data types. It is closely related to suggestions of [McCarthy 1963] 
and [Hoare 1973], and is an extension of and a deparfire from what is possible in the present 
version of Pascal 

A type definition is made by listing alternatives. An alternative is either a simple type (e.g., one 
that is a type predefined in the language, or a constant) or a composed type. In a more formal 
BNF-hke notation: 

<type definition> 
<type> 
<composed type> 

<$imple type> 
<constraint> 

♦- <type name> ':■ <type> { | <type> )■:• 
<- ssimple type> | <composed typo 
•- <conitructor> '( <selector l>:<typeJ>,.. ^selector n>:<type n> ') 

('IF <constraint>} 
♦- <constant> | <type namc> 
»- «boolean expression of selector names> 

with th? restriction that the names of all constructors in a type definition and all selectors in one 
composrd type have to be distinct. The formal type definition syntax permits simple kinds of 
constrains tc be placed on a construcor. The mc;ning of the constraint Is that In order to 
constuct an element of the type, the constuctor mu.'t be applied to arguments thi<t satisfy the 
constraining condition   (an example is the type SINGLESUBstitutlon below). 

In this notation, the data types to be used In our program may be defined by the following (only 
the upper-case letter part of the names is used in the piograms): 

TFPM 
TERMLIST 
SINGLESUBstitutlon 
SUBstltutlon 

!- VAR | MKTERM(FNLTCONST,TERMS:TERMLIST) 
- ZERO | CONS(HD:TERM, TLTERMLIST) 
:- PAIR(VAR:VAR,TERMT£RM) IF ■« OCCUR(VAR.TERM) 
tm ZERO | MKSUB(RESTSUB, LASTSINGLESUB) 

mmm* „__ 
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17 DATA TYPES AND TYPE CHECKING 

VARiabl« and CONSTants are assumed as primitive types. TERM LIST a jusi a linear Usi of 
TERMs The constraint on SINGLESUB means "Z-FAIR(V.T) is a SINCLESUBstitutlon only If 
V does not occur in T." 

Notation: !S<typename> denotes the type predicate (i e. characteriiilc function) for <typenarne>. 

The type definition determines the logic,il type of all the functions occunng in It (constructors and 
selectors) For example, HD map!; TF.RMLIST into TERM, and MKTERM is a fuflv ion from 
CONST TERM LIST into TERM ( direct product) It is assumed that a selector function Is 
defined only for objects belonging to the corresponding constructed subtype 

At present the verifier does not yet accept type definitions bu' needs to be given the type axioms. 
The definition of, eg, SUBstitution denotes a set of axioms including standard relationships 
between constructc: "ind selectors: 

ISSUB(ZERO) 
IF ISSUB(A)AlSSINGLESUtt(B)THEN ISSUB(MKSUB(A.B)) 
REST(MKSUB(/ ,B))-A 
LAST(MKSUB(A,B))-B 

And the induction rule 

F(ZERO) F(A)| F(MKSUB(A.B)) 

ISSUB(S) |- F(S) 
for  my formula F 

The functions defining a type (constructors and selectors) are submitted to the system as 
DEFFUN's If there are constraints on a type (as for SINGLESUB), type checking also involves a 
check if those conditions hold whenever a new object of the typ? is constructed; thus, the 
constiainti become part of the ENTRY assertion of the DEFFUN for the respective constructors. 
When the program is augmented by DEFFUN's for all tubfUKUOtU the system will generate 
complete argument type checks as part of the VC's However, for reduction of the vC's the 
assertions have to include a type predicate for each variable that 's passed as a parameter to a 
function or procedure   In this way, the venfier will do type checking automatically. 

While formula ing the type declarations for the sub.unctions it was noticed that in the use of 
SUBST in the iNV RIANT th» first argument is a termlist whe.«a$ In its function calls in the 
assignment statements the first argument is a term. In order to avoid .his type conflict a separate 
function TSUBST is introduced for application to i rrrns. 
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3.3 VERSION t rONSTRlirriMG ,' BASIS. Version 2 of the procedure UNIFY (see figure 
6 « « the next paf?) ll ^ cuirect inop; < ,i m the unse that tie code does satisfy the ENTRY/EXIT 
assetMnns The MSMIlom, (incliiding the invariant) have been expanded to a point where they 
oiif;ht to I)»" siil'inrntly drtailrd This version contains those axioms and goals that are naturally 
anticiMtrd by 'he piupjiinmei Among those are ,ivioms that express intended properties of the 
data types and sulifiinctions In older to speed up the simplifer. only 'iiose data type axioms that 
were ir.'My needed have hren added The DCFFUN'l for the basic data type functions have also 
been included, they consist of just the obvious input jnd output specifications (tjientjally type 
information) 

What still emams to he done is to establish an ad?qiiate basis for verifying the top le^'el, I.e.. 
completion Df the documen'ation Below we demonstrate techniques for constructing the basis by 
extracting from the reduced VC's additional specifications (or "lemmas") on the subfui.ctioni 
which are believabl? and which permit the system to completely reduce the VC's to TRUE. 

GOALFILE 
7. Axioms d«finm|> the data types and basic functions 7. 
AXIOM ISTERMLIST(ZERO) « TRUE; 
AXIOM ISSUB(ZEROMRUE; 

t Axiom? describing properties of subfunctions 7. 
AXIOM APFFND(ZERü.nS)"S; 
AXIOM APPFND(©S.ZERO)«S; 
AXIOM SUBST(«BX.ZERO)«X; 
AXIOM SUBST(ZERO.oS)«ZERO;.; 

PASCAL 

DEFFUN HD(L:TERMLIST):TErM;      ENTRY 1STERML1ST(L)A.(L.2ER0);  EXIT  ISTERM(HD); 

DEFFUN TL(L:TERMLIST):TERMLIST; ENTRY ISIERMLISTOJA^ZERQ);  EXIT   ISTERMLIST(TL); 

DEFFUN RCONS(L:TERMLIST; X:TERM):TERMLIST; 
ENTRY ISTERMLIST(L)AISTERM(X);  EXIT ISTERMLIST(RCONS); 

DEFFUN TERMS(X:TERM):TERML1ST!  ENTRY ISTERM(X)A'ISVAR(X)j       EXIT ISTERMLIST(TERMS)j 

DEFFUN FNLV(X:TERM):CONST;        ENTRY ISTERM(X)A-ISVAR(X);        EXIT ISCONSTfFNLT); 

DEFFUN TSUBST(X:TERM;S:SUB):TERM;    ENTRY ISTERM(X)AISSUB(S);    EXIT ISTERM(TSUBST); 

DEFFUN SUBST(X:TERMLIST; S:SUB):TERMLIST; 
ENTRY ISTERMLISTIX)AISSUB(S);    EXIT ISTERMLIST(SUBST); 

DEFFUN COMPCSrSUB; X:VAR; Y:TERM):SUB; 
ENTRY ISSUB(S)AISVAR(X)AISTERM(Y)A-OCCUR(X,Y);  EXIT ISSUB(COMP); 

Figure 6 Version 2 (continued) 

\ 

I 
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ENTRY ISTERMLIST(X).lSTERMLISTiYMSSUB'zI ^ACoOn-EAN); 
EX.T (ISSUB(Z)A(SUB3T'X.2)SSUBST(Y,Z))A(FLAGÖ)) v (FLAG . 0); 

VAR U.V.XI.YhTERMLIST; VAR X2.Y2:T£RM, VAR Z2:SUB; 

7. Initialization of variabl<»s 7. 
w':.ZER0; V..ZER0; Z:.ZI; Xh-X; Yh.Y; FLAG:-]; 

WHILE (XMZERO; A (Yi/ZERO)/  (FLAG=1)D0 
BEGIN 
A2:- TSUBSnHOUD.Z); 
V2:- TSUBSTCHDCYD.Z); 
IF ISVAR(X2) THEN      BEGIN   IF ISVAR(Y2) 

THEN    BEGIN  W (X2^Y2) 
THEN Z:rCOMP{Z, X2.Y2 ) 

ELSE   BEGIN   IF OCCUR (X2.Y2) THEN FLAG-.O 
TMO       ELSE t-WWl. X2,Y2 ) END 

END 
ELSE   BEGIN   IF ISVAR(Y2) 

THEN    BEGIN  IF 0CCUR(Y21X2) TKEN FLAG-^O 
ELSE Z:rC0MP(Z,Y21X2) 

END 
ELSE    BEGIN   IF FNLT(X2)rFNLT(Y2) 

END 
ELSE FLAG:=0 

END 
END; 

U :=RC0NS(U,KD(X1));    V ^RCONSCV.HDCYl))- 
Xi:=TL(XI); YI:.TL(YI); 
END; 7. End jf WHILE body 7. 

IF (XMZERO) v (YI/ZERO)   THEN FLAGM) 
ti<D; 7. Procadur« body 7. 

Fiijurp 6: Vmioii 2 (intrrmrdiale vmion) 
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VC's 1  3 5 6 8 ar« reduced to TRUE 

• 2 
(ISTERMLI5T(X) & ISTERMI IST(Y) & ISSUB(Z«I )AtSTERMUST(U«l )AISTERMLIST(V«1 ) 
ASUESKU'l.itD^SUBSTIViil.Z-DAü«!  X^V«^Y.rFLAG«lMvFLAG3l=0 & ISSUB(Zl) 

-. ISSUB(Ztl)ASUBST(Y,Z«l)^SUBST(X1^l)/NFLAG«l = lvFLAG«l=0) 

• 4 
flc.TE9vll.lST(RC0NS(V.HD(Yl))) * i';jTERMLIST(RCONS(U1HD(Xl))) & ISTERMLIST(TL(Y1)) & 
ISTERMLIST(TL(XI)) & I^UUiZ?".?) i 
SUBST(TERM$(T$UBST(HO(Vn,Z)),Z2i2hSUB$TrrEltMS(T$UBST(HO(XI)lZ))lZ2«2) & 
ISC0NST(FNLT(TSUBST(HD(Y1),Z)))& ISTERMLIST(TERMS(TSUBST(HD(V I ),2))) & 
ISTERM1 IST(TERMS(TSUOST'HD(XI l.Z))) & 
FNLTiTSUB$T(HD<YI),Z))*FNlTaSUBST(HO(XI),Z))li -ISVARdSUBSTCHDtXD.Z)) & 
-ISVAR(TSUBST(HD(Y1 ),Z)) & SUÜSTIU.Zl^SUBSTIV.Z) & 
ISSUBfZ) & iSTERMLIST(U) & ISTCRMLISTtV) & ISTERMLIST(Xl) & ISTERMLIST(Y1) 4 
-YlzZE.70 & 'XI=ZER0 * lSTERM(TSUBST(HD{Yn,Z)) & ISTERM(HD(YI)) & 
ISTERM(TSI)BST(HD(X1),Z)) • I3TERM(HD(X1)) 

-» APP::NU'V1Y1)^APPEND(RC0N">(V,HD(Y1))1TL(Y1)) & 
APPEiJD(U,Xl)rAPPtNn(RCONS(U,HD(XI)),TL(XI))* 
SUBST(RCONS(U,HD(XI))lZ2«2)=SUBST(RCONS(V1HD(Yl)),Z2«i)) 

' 

• 10 
('X1=ZER0 & SUBST(U,Z)>$Ue$T(V,Z) & I5TERMLIST(YI) & ISTERMLI'jTiXl) & 
ISTERMLIST(V) & ISTEPMLi:-T(U) 6 ISTERMLIST(RCONS(U,HD(X I ))) & 
ISSUB(Z) & «VI>ZER0 & 1?TERM(HP(X1))& ISTERMLIST(PCONS(V,HD(. !;)) & 
ISTERMLISTCLJYl)) K 15TEPMLI3T(1L(XI)) & ISVAR(TSUBST(HD(Y1 ),Z)) & 
TSUBST(HD(YI )lZhT5UBST(HD(X I ),Z) Ä ISTEKM(T3üBST(H0(Yl ),Z)) & ISTERM(HC;*. I)) 

-» SUBST(RCONS(U,HD(XI))lZ)=5UBST(RCONS(V,HD(Yl)),2)& 
APPENDIU.XDrAPPENDIRCONStU.HDfXDIJLIXl)) & 
APPEND^.Yl )=APPEND(RC0N5(V,HD(VI ll.TKYl))) 

■ 1 I 
(SUBST(U.ZhSUBST(V,Z) & ISTERMLI5T(Y1) 4 ISTERMUST(Xl) 4 ISTERMLIC.T(V) 4 ISTERMLIST(U) & 
ISSUB(Z) 4 4 -Xl=ZEPO -Y1=ZEP0& ISVAR(TSUBST(HD{Y11,2)) 4 1CTE^M(HD(Y1;.) 4 
ISTERM(TSUBST(HD(XI),Z)) 4 
ISTERM(HD(X1))4 ISVAR(TSUBST(HD(X1 ),Z)) 4 ISTERM(TSürJST(HD(Yl ),Z)) 4 
-TSUBST(HD(Y1),Z)=TSU0ST(HD(XI),Z) 

-♦ -0CCUR(TSUBST(HD(X1),Z),TSUBST(HD(YI)1Z))4 
(ISTERMLIST(TL(X1)) 4 ISSUB(C0MP(Z)TSUDST(HD(X1 j.Zj.TSUBSTiHDIYI ),Z))) 4 
ISTERMLIST(RCONS(V,Hn(YI))) 4 ISTERMU5T(RC0NS(U,HD(X1))) 4 i:iERMLIST(TL(YI)) 

-» APFCNO(V,VI)*APPENO(RCONS(V^O(YI)),TL(V1)) 4 
APPENDdJ.XDrAPPENDlPCONSdl.HDIXin.TUXl)) 4 
SUBST(RCONS(U,HD(Xl))lCOMP{Z,TSUBST(HD(Xl)12),TSUBST(HD(Yl)Z)))=SUBST(RCON3(V,HD(Yl)), 
COMP(Z,TSUB3T{HD(X 1 UUSUBSTIHDm ),Z))))) 

Figure 7: Sonic VC's for version 2 in siinplifird form 

The numbering corropondl to the order in which the VC's are generated. 
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The analysis of the VC's not ym irdnced to TRUE shows thiee areas where the documentation 
(the basis) has to be extmdrd Fach area is mdrpcndcnt from the others, thus they can be dealt 
with sepaiately We appioach the pioblem of proving a VC by first attempting to prove each 
conjunct in the conclusion repai,itely. 

a) OCCUR (VC.II) Thr conchmon of VC«II contains -OCCUR(A.B). The path of VC«II is 
deteimmed by the control tests I.SVAR(A). iSVAR(D) and A^B in its premise By analysing the 
path, -'OCCUR(A,B) is found to br an rntry lequurmrnt of a call on COMP which was intended 
under these condition; So this conjunct of VC«II is judged correct, and will be satisfied if the 
user apr^ < to ado ihe following specification on OCCUR to the basis: 

IF ISVAR(X)AISVAR(Y)A(YI'X)THEN -OCCUR(X1Y)-TRUE 

b) APPEND (VC's 4.7,9,10,11) As was mentioned before additional properties of APPEND are 
needed.   It turns out that exactly one fact crops up in all the VC's: 

APPEND(RC.ONS(S,HD(T)),TL(T)) • APPEND(S.T) 

The programmer mi(;ht have addrd a lot of irrelevant properties at ?.I d) if he had started to 
write down things about APPEND he thought might be helpful As seen here, it can be more 
efficient to write down only very simple axicms and delay anything further until it is seen from 
the VC's what is needed If atomic properties of APPEND and RCONS had been added instead, 
the above fact would have to be deduced from them each time it was required (here: 10 times). It 
is much more efficient to add the fact to the basis at this puint and justify it once during the 
analysis of the basis (see section ? 4). Moreover, the user can dela/ completely specuying PCONS. 

c) Equalities involving SUBST and RCONS (VC's 4.7,9.10,11): As they are the "heart" of the 
problem the equalities involving SUBST turn out to be the hardet to get reduced. We could 
simply assume the properties of SUBST and RCONS that apparently would allow complete 
reduction to TRUE of all remaining VC's But, beside the fac. that those properties may be too 
complex to be believable even r.t the top level, a certain regularity can be observed in the VC's, 
due to the structure of the program The equality in the conclusion is generally of the form 

(1) SUBST (RCONS(A ;,BI),S) - SUBST(RCONS(A2,B2),S) 

whereas the promts' includes a corresponding equality 

(2) SUBST(A l,S') - SUBST(A2,S') 

Thus, it is sensible to hope that lemmas derived from one problem «ill be general enough to 
reduce other problems as well. 

Recall that applying a substitution to a list means < oolymg it to each list element separately. So 
the obvious way to simplify an equality (I) is by reducing it to equality (2) via a statement 
expressing a kind of commutatlvity 

(3) SUBST(RCONS(A,B),S) - RCONS(SUBST(A,S),TSUBST(B.S)) 

(fhe change from SUBST to TSUBST is   ecessary because of the different type) together with 

-   - ■*.. ■ ■ ■"- -   -  ■■ ■  -■■'■■ 



  "■•  ■■ -  - ' ■■>   

vHENKE and LUCKHAM 22 

(4) IF (XI-X2)Ar'l-Y2)THEN RCONS(\ l,YI)=.RCONS(X2.Y2) 

as a goal statemmt For example, look at th« relevant parts of VCtlO. 

SUBST(U.Z)-SUBST(V,Z) A TSUBST(HD(YI).Z)-TSUBST(HD(XI),Z) 
^SUBST(RCONS(U,HD(XI)),Z)-SUBST(RCONS(V,HD(YI))Z) 

Using the statements (3) and (4) the simplificr will generate from the conclusion the subgoal 

RCONS(SUBST(UZ),TSUBST(HD(XI).Z))-RCONS(SUBST(V1Z).TSUBST(HD(YI)>Z)) 

and from that 

SUBST(UZ)-SUBST(VZ)ATSUBST(HD(X1)7)-TSUBST(HD(Y1),Z) 

which is just the premise 

Although (?) and (4) will amplify the other VC's further, they are not sufficient to reduce them 
completely. The rquality in VC«4 

SUBST(RCONS(U1HD(XI)),Z2.2)-SUBST(RCONS(V,HD(YI)).Z2«2)) 

will be reduced to 

(5) SUBST(U,Z2.2)-SUBST(V,Z2«2) A TSUBST(HD(X1),Z2.2)-TSUBST(HD'YI).Z2.2) 

Now, the first conjunct obviously has to be proved from the equality 

(6) SUBST(U,Z)-SUBST(V,Z) 

in the premise. This raises the question, how Z and Z2«2, the actual value of Zl, are related to 
each other. Looking at the program text we find that Z2 is the substitution returned by the call to 
UNIFY In case of success; thus, Z2 is an extension of Z by one or more applications of COMP. 
To express this relationship we introduce the predicate ISSUBSUB(SI:SUBi S2:SUB) meaning 
"SI ;s a sub-substitution of S2" or more precisely: SI is an initial part of S2 (from which It follows 
that by composing SI with appropriate smglesub's we can get S2). We can now formulate a 
lemma sufficient to reduce the first equality in (5) to (6): 

IF ISSUBSUB(Z,Z2) A SUBST(U.Z)-SUBST(V.Z) THEN SUBST(U,Z2)=SUBST(V.Z2) 

provided the predicate ISSUBSUB(ZIZI) is added to the exit condition of UNIFY and therefore 
also to the invariant of the WHILE loop. 

In order to prove the second conjunct of (b) we have to look for "similar" equalities in the premise 
of.VC«4.   Obviously, the relevant parts are 

(7) SUBST-rERMS(TSUBST(HD(YI),Z)),Z2.2)-SUBST(TERMS(TSUBST(HD(XI).Z)).Z2«2) 
AFNLT(TSUBST(HD(YI),Z))-FNLT(TSUBST(HD(XI),Z)) 
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which exactly mean that TSUBST(HD(X l).Z) and TSUBST(HD(YI).Z) are unified by Z2.2 If 
we add as a new axiom (no.22 in figuie 8 (appendix)) the cundition stating when two functional 
terms are unified, then (7) will be replaced by: B 'unctional 

(8)      TSUBST(TSUBST(HD(YI).Z).Z2.2)-TSUBST(TSUBST(HD(XI).Z)1Z2.2) 

l*!raa! n0W ,S t.0/
pr0Ve the 5CCOnd C0nJunct of (5) from ^ Th,s * ■ Plausible implication and is added as a goal (no. 16 in figure 8) r 

Similarly, other lemmas are derived to reduce the remaining VC's to TRUE. 

The third version of the top level program is shown in appendix (figure 8) U^ine the axioms 
and goals listed m figine 8 the system .s lOk to reduce all the venfication conditions to TRUE 
except VC«2; this involves more complex propositional structure and is pro^d easily by the 
theorem prover Thus, figure 8 contains an adequate documentation of 'he top level. 

3.4 ANALYSIS OF Tilt VERIFICATION BASIS. The basis u given in figure 8 is adequate 
to reduce the top level VC/s co.npletely. but by no means does the vmfkat.on of the program end 
at this point. Beside axioms about data structure primitives the basis contains spcifications on 
non-primitive functions and lemmas relating these functions. 

Analysis of the verification basis is intended to show that the basis is acceptable that is we can 
wr.te programs for the second level functions that satisfy the DEFFUN's and the lemmas A fairlv 
sensible order of doing this is the following: 'emmas. A fairly 

I)   Axioms from user-defined data structures and standard properties of primitives are accepted 
2    AII basis statements Involving only primitives must be derived from the standard properties' 
3) The number of remaining statements involving second level functions is reduced bv'findintr 

dependannes between them. 7 ""U,,IB 

4) Code for the second level functions is written to satisfy the DEFFUN's and the remaining 
basis specifications ■cmaiMing 

b)   If a lemma cannot be ratisfied. it must be changed. This in turn requires establishing the 
adequacy of the altered bam for verifying the top level. g 

Following this scheme, (refenng to figure 8 (appendix)) we find that axioms .1 and .2 are Dirt of 
the rtata type definitions   (Note that no use was made of other data type axioms so far  however 
£ey will be required to verify lower level funct.ons.) We take the functions APPEND and 
OCCUR as primitives (standard library functions); axioms nos.3.4.6 are standard properties of 

Obviously, axiom «11 follows immediately from axiom .10 and goal «12. 

All the remaining basis statemmts involve second level functions.   They obviously cannot be 
justified using only the given DEFFUN's. but provide further specifications of the subfm.X s 
They must be regarded as neccs^y conditions that the programmer's code must satisfy    In ^ 
way they may serve as  guide lines" for the writing of second level programs; some of them    ee 
nos. 9.10.13 - can be translated directly into code as part of the case analysis g" 
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| 
For some of the functions the progiams are staightforward.  Axioms «5 and «7 specify RCONS: If 
we define RCONS by 

RCONS(X.Y):- APPEND(X.L1ST(Y)) 

then «5 follows easily from well-known properties of APPEND and LIST. Taking COMP as the 
abbreviation 

COMP(S,V,T) -  4K:UB(S.PAIR(V.T)) 

the lemmas nos 8,9,10. and i2 give the obvious  peciftcation of ISSUBSUB in terms of MKSUB. 

In appendix figure 10 programs for the tecord level functions are given which correspond to the 
DEFFUN's used at the top level The verification that these programs satisfy the DEFFUN's can 
be done relative to a basi« consisting of the data type definitions (re. axioms and DEFFUNS for 
the constructors and sclertors) This is straightforward since the programs directly reflect the 
recursive nature of the types 

Remark it should be noted that verification basis for the top level does not necessarily 
completely predetermine the way second level functions have to be implemented In our example, 
application of substitutions can still be either simultaneous or sequential; this solely depends on 
the representation of the function COMP (or MKSUB). (Although the type definition for SUB 
implies sequential application, we did not make any use of those axioms.) The implementation in 
figure 10 assumes sequential application of substitutions. 

Now we must show that the programs satisfy the rest of the lemmas. Usually, proving that a 
lower level function meets a specification (satisfies a lemma in the basis) means setting up a new 
verification problem by adding the lemma to uc justified to the ENTRY and/or EXIT assertions 
for the body of the function. In complex cases, especially where the proof .equlres induction over 
a data structure. It is necessary to reduce the problem by hand firt (Data structure induction 
rules are not Implemented yet.) 

AS an example, we show the justification of the goal «15. usng the programs from figure ID. 
First, goal «15 was reduced using the induction rule for the data type SUB to the induction step 
problem (the base case problem is trivial) This problem in turn was fuither simplified by hand to 
(15') using properties of ISSUBSUB and the assumption of the induction step. 

(15')       ISSUB(SI) A ISSINGLESIJB(S2) 
a TSUBST(L, MKSUB(SI, S2)) - SINGLETSUBST(TSUBST(L. SI), S?) 

If (15') can be venfted, then we can use induction to pnve goal «15. Figure II (appendix) shows 
the verification of (15'). 

Perhaps the reader may be convinced that the proofs of ai! the remaining lemmas in figure 8 (see 
Appendix) are as straightforward as »lb. Hence figure 8 presents an adequate and acceptable 
basis (I.e. the lower level functions can indeed be coded to satisfy the lemmas). The top level 
then Is verified. 

This Is not so. 
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Coal .16, although Mmple enough, h.des (i.e. depends upon) an extra property of the too level 
hat has not yet come ro light, It I, not true of subst.tut.ons Hi general, thus .t .s not   cceÄ e in 

th, form It IS true of the subst.tut.om instructed by the program (wh.ch is why -t Us 
believable    because .hey have a .pec.al property. Namely, whenever a var.able occurs « the teft 

hand side of a pair, «will not occur In any later pair. Th.s property holds for these  ubstuuUn 

because whenever , subst.tut.on for a var.able .s added to Z. that part.cular VlrtllS^SSS 
rom al expressmns rema.n.ng .n XI and YI (by then applying 2). The property is equ ITler'^ 

Idempotency of the substitut.on wh.ch we express by the new predicate "IDEM(sr     q l t0 

IDEM{S) - SUBST(\.S).SUBST(SUBST(X.S).S)   for all X. 

We must change goal .16 to pal .16NEW by add.ng IDEM(Z) to it as a premiss and then start 
venfkat.on of the top level again (see .tep 5. banning Sect.on M).   Reason.ng a ong the In" 
developed m earl.er scct.ons (and anaiys.s of .he new VCs) shows that we have to e^   and al 
assert.ons In the program by appropriate .nstances of IDEM (see figure 12).   Analys.s of the Vc's 
shows that one add.t.onal lemma is requ.red: «na.ysis ot the VCs 

iDEM(SI) 3 IDEM(COMP(Sl.TSUBST(X.SI).TSUBST(Y.SI))) 

We add this to the basis (goal .I6A) and obta.n aga.n a complete reduction of the top level VCV 

. 

ENTRY ISTERMLIST(X)AISTERMLIST(Y)AISSUB(Z1 )AIDEM(ZI )• 
EX,T vS(?LAGZl J)I

SUBST(XlZ,,SUBST(Y-Z» A ™^mi\,l) A IDEM(2) A (FLAG»!)) 

INVARIANT ( ..A(APPEN0(V,YI).Y)AISSUBSUB(Z11Z) A IDEM(Z) A (FLACl)) v (FLAG-O) 

t ! 5NEW t GOAL TSUBST(BX(BZ).TSUBST(OY1«Z) 
SUB ISSUBSUB(«S,Z) A I0EM(«S) 

ACTSUBSTCTSUBSTIX.BSUKSUBST^SUBSTCY.BSU»; 

t 16A 7. GOAL IDEM(C0MP(»SI.TSUBST(BX1«SI)ITSUBST(BY,«S1)))  SUl) IDEM(Sl); 

Figure 12: Expanded documentation for idempotency 

The additional lemma .16A can be justified by show.ng that it is derivable from standard 
properties of substitution composite and appl.cat.on. (This proof is given in ^oo^Z) 
This means that it will be satisfied by correct code for COMP and TSUBST. aPPe™ix.) 

■ -  >— . - --  



" ■■ ■» W^i ^■"   mm 

vHENKE and LUCKHAM 
26 

3.5 VERIFICATION OF FURTIIF.R PROPERTIES OF UNIFY. When the user has 
developed an adequate clocummtation for h.s propiams with respect to one propertv he ran 
attempt to explo.t II for the vrr.f.cat.on of fu.ther propert.es In this section we demonsuate how 
additional verification problems can be solved by mod.fymg the established basis and assertions. 

The basis developed at the end of section M (figures 8 and 12) is adequate for venfyme a rather 
weak property of our unification program. However, even this task has brought to light the 
unusual and useful idempotency property of the substitutions constructed by this proeram Now 
when we come to verify more stringent requirements we find Turther code changes to be necessarv' 
and these are justifiabe by idempotrncy 5 necessary. 

Our goal is to verify that 

fli MWlJv ee
f
npl■1,"l

a
Ä7-y,p'al;',n,fter- if the term"stJ P«*^ " «rgumwtl are umfiable 

(b) UNIFY returns FLAC-0. re failure, only if the termlists are not umfiable 

In order to prove (a) we mtioduce i predicate 

MCU(X.Y,Z) - "S is a most genet alunifier (or mgu. for short) of X and Y le S is a 
subst.tution that unifies X and Y. and if S' is another unifier for X and Y 
then S is a sub substitution of S'" 

First of all. assertions m the program art strengthened by replacing all occu rences of eouations 
of the form SUBST(X,S)=SUFVST(Y.S) by MGU(X.Y.S) We cannot make a 11^.17^ 
minded strengthening of the bnsis since some goal statements are not true if all of the 
substitutions are .estr.cted to being mguV We must find out what properties of MGU need to be 
added to the existing basis We therefore return to the verifier and try to derive the necessarv 
axiomatization for MGU from the VC's necessary 

The first problem arises from a VC corresponding to the path from ENTRY to INVARIANT 
which is of the form ojvini^i, 

ISTERMLIST(X)AISTERMLIST(Y) A ISSUB(ZI) - MGU(ZERO. ZERO. Zl) 

This can only be true if  ZI-ZF.RO   (tee case (til) in section 2.4).   Now. Zl is a value parameter 
So we must ask if Z1 can be eliminated from the body of the procedure. -'»«er. 

This leads us to consider the path containing the recursive call to UNIFY, and here we find in 
general th-.i ZHZERO The rrcursive call is oi the form 

I NIFY(TERMS(X2). TERMS(Y2). Z. Z2. FLAG) 

where X2.TI UBST(HD(X I). Z) and YVrsUBST(HD(Yl), Z). and the current value T Z 
replaces the formal parameter Zl Notice that X2 and Y2 are values resulting from applicat. nt 
of Z to X I and Yl. If we trace the computation of this call, we find that the only use made of Z 
(the value of Zl) is n apply it agam to X2 and Y2. By idempotency. this second appli aUon ls 

redundant- Thus, if we omit the parameter Zl altogether and initialize Z to ZERO we'ee eiactIv 
the same result by appropriately composing the substitution returned by the recursive call with the 
old Z. To do this, we introduce a general composition function. 

L -- MM 
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SCOMP(ZI.Z2) -  the composition of two substitutions, Zl Md Z2. 

It turns out that the verification can now be completed bv addm» rm. r,,.,.,i 
describes how to build up mgu's ^mpietea oy adding one crucial new axiom which 

(■) 

MGU(\I.YI.SI)A MCU(TSUBST(X2.SI).TSUBST(Y2SI) S2) 
MCIKRCONSOC l,X2), RCONS{YI.Y2). SCOMP(Sl1S2)) 

(goal    .26    in    figure    I?)     If   we   teplace   the   old     rOMP^7Vv\    v 

for «^„b,!,,,. w, g,ve . „„..„„.n o, .h. „„, ,„,m„i,A obv.ou, ^^Tr.h«^^,«' 

Remark:     Having made thp^e changrj (iiistifird on the baut nf iri-«,    .      \ 
having to verify fdempotency in the old c^   disappears and rh   ^P01™^' the ^»on for 

._ -■■  
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7. Goals for MGU t 
1. 26 t GOAL MGUlRCONS^XI.^l.RCONSteYl.aYZ). SCOMP(fflSI «52» 

SUB MGU(X11YI,S1)AMGU(TSUBST(X21S1)1TSUBST(Y2,SI),S2)- 
7. 27 % GOAL MGU(RCONS(lPXI.nX2),RCONS(RYl,«9Y2)1 M<SUB(oSI BS2)) 

SUB MGU(X i .Yl .SI )AMGU(TSUBST(X2,SI )1TSUBST(Y2,SI) S2)- 
7. 28 7. GOAL MGU(RCONS((K)XI.«X2),RCONS(QYl,wY2),(aSI) 

SUB MGU(X I .Yl ,SI)A{TSUBST(X21SI).TSUBST(Y2,S1)); 
7. 29A 7. GOAL MGU(«X.oY,PAIR(«3X,^Y»    SUB ISVAR(X)AISTERM(Y)A^OCCUR(X Y)- 
7. 29B 7. GOAL MGU(«XlraY,PAIR(QY1oX))    SUB ISVAR(Y)AISTERM(X)A<OCCUR{Y'X)' 

7. 30 7. GOAL MGU^X.wY.nS)    SUB (FNLTiXj.FNLKYjJAMGUdERMSIXl.TERMSCY) S)- 
X 31 7. AXIOM MGUIZERO.ZERO.ZEROWRLT; «^ITMH 

DEFFUN MKSUB(S:SUB; SI :SINGLESUB): SUB; 
ENTRY ISSUB(S)AlSSINGLESUB(SI);    EXIT ISSU l(MKSUB); 

DEFFUN PAIR(X:VAR; Y.-TERM): SINGlESUB; 
ENTRY ISVAR(X)AISTERM;Y)A.OCCUR(X1Y);    EXIT ;SSINGLESUB(PAIR); 

3EFFUN SC0MP(S11S2:SUB):SUB;     ENTRY ISSUB(S1 )AISSUB{S2);      EXIT ISSUB(SCOMP); 

PROCEDURE UNIFY(X.Y:TERMLIST; VAR Z:SUB; VAR FLAG:INTEGER). 
ENTRY . . 
EXIT (ISSUB(Z) A MGUIX.Y.Z) A (FLAG«!)) v (FLAG.O); 

BEGIN 
t Initialization of variables 7. 

. .    Z:.ZERO; . . . 

INVARIANT (ISSUB(Z)AISTERMLIST(U)AISTERMLIST(V)AISTERMUST(X1 ) 

A ISTERMLIST(YI)AMGU(U1V(Z)A(X.A1''PEND(U,X1))AIY.APPEN0(V,YI))A(FLAC.|)) 

WHILE        DO 
BEGIN 
IF ISVAR(X2) THEN       BEGIN   IF ISVAR(Y2) 

THEN BEGIN IF (X2^Y2) THEN r:.MKSUB(Z,PAIR(X2.Y2)) 
END 

ELSE .... 
END 

ELSE     BEGIN   IF ISVAR(Y2) THEN      . . 
ELSE BEGIN      IF rNLT(X2)=FNLT(V2) 

THEN    BEGIN UNIFY(TERMS(X2)ITERMS(Y2),Z2,FLAC)' 
IF FLAG«I THEN Z:.SC0MP(Z,Z2) 
ELSE FLAC:>0 

END 
ELSE .... 

Figure 13: Additional documeiilation and program changes for MCU 

28 
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FURTHER PROPERTIES OF UNIFY 

Problem (b)    .$ to show that If UNIFY returns FLAC-0 then there Is no unifier for X and Y. 

We express this property by the predicate. 

NOTUNlF(X,Y) -  "X and Y are not unifiable" 

and set up the nrw verification problem 

| UNIFY(X,Y,Z.FI.Ar,) | (... AFLAC»!) V (FLAG-0 A NOTUNIF(X.Y)) 

Note that the postconcl.t.on impl.rs " FLACI <-> NOTUNIF(X,Y) " The adequate 
ax.omat.za.mn of NOTUNIF ll ak.KM s.ra.ghtforward. However. ... goals .33 and .M (see figure 
14) the premiss MÜU(       ) is cmciai for acceptability. 

The final program and documentation for the full verification of UNIFY is given in figure 14. 
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APPENDIX 

Proofs of lemmas 
Figure 8: Third version of top level ♦ corresponding goalfile 
Figure 9: Sample VC'i for third version 
Figure 10 
Figure 11 
Figure 14 

Second level fi nctions ♦ goalfile 
Lemma about ^oal 15 
The complete p.ogram and documentation for UNIFY 

Proofs of Lemmas 

Notation: We use the following shorthand notation: 
'x.oi" for substitution application (TSUBST/SUBST) 
'«*/!" for substitution composition (MKSUB/SCOMP) 
"xiiy" for list concatenation (APP/RCONSy 
"<x.y>M forPAlR(\.Y) 

We make use of »ertam facts about substitutions; 

(I) associativity of V:  ot l»(a:2«c<3) - (oiUo<2)»«3 
(li) a k-nd of associativity of "." (x.oi\)oc2 - x.(oCl»e^2) 
(ill) a kind of dutnbutivity of "." {xoy).oi - {x.oc)<iy.oc) 

1. Coal 16A: IDEM(o<) -» WEMUw.oC, y.oi>) 

This is equivalent to proving 

(<* • <x.c<, yoc>) • U* • <x.oi, y.oi>) - u • <x.u, yoC> 

from the assumptions 

(al) ofu-u,    (a2)  isvar(xo<).    (a3) isteim(y.o^),   (a4) ■> occuKx^.y.oi) 

(a2)-(a4) are from the ENTRY assertion for COMP; they imply that the single 
substitution Is idempotent. namely 

(b)     <X.e(.,y.oC> • <x.u,yoC>   -   <X.oC,y.ei> 

Now 
(e* • <x.oC, yoC>) m(c< • <x.oi, y.oC>) 

- lid • <x.o^ y.u>) » oi) • <x.oi, yoi> 
• ((<^ •u)» <x.oC, y.(e*•«:>)] • <x.e^1 y.oc> 

- [oc • <x.e^, y.u>] • <X.oi, y.oc> 
• of <x.oi, yoc> 

byO) 
using standard properties 
of "." and V and (aI) 
by (a) 
by (b). (I) 

 -  



3^" _;V 

v HENKE and LUCK HAM 

2. LEMMA (*) for MCU (Section 3.5) 

()    MCU(XI.YI.^I)A MCU(\2c/:.Y2.c<l,c<2) a  MCU(X |.;.X2. YI^Y?. o^ l*c<2) 

We prove ( ) from the •Itumptioni 
(I) 

and 
(2) 

MGU(\I.YI,c<l) 

MGU(\2r/|, Y2c/.l,r<2) 

(N|.\2)/^ -(Yl Y2)/3 
ß ' *Ml 
(XI  X2)(^|r./3|).(Yl:Y2)(o<l^l) 
[(XI.«IHX2.«<l)J4l -[(Yl.e^l).(Y2o<l)]./3l 

From this we infer        i\2^\)ß\ - (Y2.o<l)/3l 
Thus, by (2) /i\ - oc2^2 
or /5 - (c<l<?>o<:2)*./52 
for suitable /32. which ptoves ( ) 

Suppose 
Then by (I) 
so 
which implies 

for suitable/31, 

by (II). (ill) 

- -■■   
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APPENDIX 

GOALFI'.E 

7. Axioms dcdning tha data typos and ba:ic functions 7. 

t   I 7. AXIOM ISTERMUST(ZERO) « TRUE; 
«2 7. AXIOM ISSUB(ZEROMRUE; 

7. Axioms describing properties of subfunctiont 7. 

7.   3 7. AXIOM APPENDIZERO.nS^S; 
7.   4 7. AXIOM APPENDtoS.ZERO^S; 

7.   5 7. AXIOM APPEND(RCONS(«5.HD(fflT)),TL(BT))HAPPENO(S,T); 

7.   6 7. AXIOM IF ISVAR(X)AISVAR(Y)A(Y/X) THEN  '0CCUR(OXPOY)HTRUE; 

7.   7 7. GOAL RCONS(OX11OX2)=RCONS(OY1,OY2)  SUB (X|.Y1)A(X2-Y2); 

7.   8 7. AXIOM IF ISSUB(Z) THEN ISSUBSUB(ZERO.ffZ)«TRUE; 

7.   9 7. AXIOM ISSUBSUBCIBZ.BZMRUE; 

7. 10 7. AXIOM ISSUBSUB(nZ,COMP(aZ1®X,sY))..TRUE; 

7. 1 I 7. AXIOM IF ISSUDSUQtY.Z) THEN ISSUBSUBt^Y.COMPIoZ.fflV.oWj^TRUEj 

7. 12 7 GOAL ISSUBSUB(«9Z,QZ1) SUB ISSUQSUB(ssZ21Zl)AlSSUBSUB(ZlaZ2), 
ISSUBSUBiZ.oZZlAlSSUBSUBloZZ.Zl); 

7. 13 7. AXIOM TSUBSTIsX.ZEROM; 

7. 14 7. AXIOM IF MSVAR(X) THEN -ISVAR(TSUBST(oX1aiS))«TRUEi 

7. 15 7. GOAL TSUBST(«X,«Z)3TSUBST(«Y,<jZ)  SUB ISSUBSUB(oZl,Z)A(TSUBST(X,aZI).TSUBST(Y,«Zl)); 

7, 16 7. GOAL TSUBST(»X,wZ)=TSUBST(«Y1«5Z) 

SUB ISSUBSUB(nS.Z)A(TSUDST(TSUBST(X1oS),Z)=TSUBST(TSUBST(Y1«S),Z)); 

7. 17 7. GOAL TSUBST(®X1COMP(QZ.'oX1»BY))=TSUBST((i»YlCOMP|BZ,BX,«Y)) 
SUB ISSUB(COMP{Z,X1Y))1 ISSUBiCOMPtZ.Y.X)); 

7. 18 7. GOAL TSUBSTIwX.COMPdsZ.QU.oVlHSUBSTdJY.COMPIoZ.BU.ÄV)) 
SUB (U.TSUBSTlX.ZjJAlVrTSUBSTlY.Z^AlSSUBiCOMPCZ.U.V)), 

(U.TSUBST(Y1Z))A(V-TSUOST(X.Z))AISSUB(COMP|Z,U,V)); 

Figure 8 (rontlmifd) 

J 
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t 19 7. AXIOM SUPSTlaX.ZERO-X; 

1. 20 7. AXiOM SUBST(ZER0.«9SMERO; 

7. 21 1. AXIOM SUBSKRCGNSdBX.fiiYKwZ^RCONSISUBSTIX.Z^TSUBSTIY.Z)); 

?! 22 7. AXIOM IF FNLT(X)=FNLT(Y) THEN (SUBSKTERMStnXUZhSUBSTCTERMSiBYUZ))«« 
(TSUBSKX.Zj.TSUBSKY.Z)); 

7. 23 7, GOAL SUBST(»»X1C0MP(«71fi>A,cT>B))=SUBST(»Y,:0MP(«Z1«»A)eB)) 
SUB (SUBSTCX.Z^SUQSKY.ZJlAlSSUQICOMPCZ.A.B)); 

7. 24 7. GOAL SUBST(0X,oZ)'SUBST(<8Y,QZ)    SUB ISSUBSUB(aZI,Z)A(SUBST{X,aZI )>SUBST(Y,«ZI));.; 

PASCAL 

DEFFUN HD(L:TERMLIST):TERM;       ENTRY ISTERMLIST(L)A^L»ZERO); EXIT   ISTERM(HD); 

DEFFUN TL(L:TERMLIST):TERMLIST; ENTRY ISTERMLIST(L)A^L.ZERO);  EXIT   ISTERMLIST(TL); 

DEFFUN RCONS(L:TERMLIST; X:TERM):TERMLIST; 
ENTRY ISTERMLIST(L)AISTERM(X);  EXIT ISTERMLIST(RCONS); 

DEFFUN TERMS(X:TtRM):TERMLIST;   ENTRY ISTERM(X)A-ISVAR(X);       EXIT ISTERMLIST(TERMS); 

DEFFUN FNLT(X:TERM):CONST;        ENTRY ISTERM(X)A^ISVAR(X);       EXIT ISCONST(FNLT); 

DEFFUN TSUBST(X:TERM:S:SUB):TERM;   ENTRY ISTERM(X)AISSUB(S);     EXIT ISTERM(TSUBST); 

DEFFUN SUBST(X:TERMLIST; S:SUO):TCRMLIST; 
ENTRY ISTERMLiST(X)AlSSUB(S);   EXIT ISTERMUSTISUBST); 

DEFFUN COMP(S:SUB; X:VAR; Y:TERM):SUB; 
ENTRY ISSUB(S)AISV \R(X)AISTERM(Y)A^OCCUR(X,Y);        EXIT ISSüB(COMP); 

DEFFUN OCCUR(X:VAR; Y:TERM):BOOLEAN;  ENTRY ISVAR|X)AISTERM|Y); EXIT ISBOOLEAN{OCCUR); 

Figure 8 (continued) 

;--- -        - --— --■- ■■j—    ■ —-- '-■i  ■-  ■ ■ " -   - ::-      -■■■ -- ■"■''■ 



'•«^VW 

J^ 

35 APPENDIX 

PROCEDURE UNIFY(X,y:TERMLIST; 2l:SUB; VAR Z:SUB; VAR FLAG:B00LEAN): 
ENTRY ISTERMLIST(X)AISTERMLIST(Y)AI5SUB(ZI ); 
EXIT (ISSUB(Z)A(SUBST|X12).SUBST(Y.Z))AISSUBSUB(ZI,Z)A(FLAG.|)) v ;,-> AC • 0); 

VAR U,V,X1 v|:TERMLIST; VAR X2,V2:TERM; VAR Z2:SUBi 

BEGIN 

7. Initialization of variables 1. 
U:-ZER0;    V:.ZER0;    Z:«ZI;    XhrX;    Yli^Y;    FLAG:-!; 

INVARIANT (ISSUB(Z)AISTERMLIST(U)AISTERMLIST(V)AISTERMLIST(XI)AISTERMLIST(Y1)A 

(SUBST(U1Z)-SUBST(V1Z))A(APPEND(U,X1)SX)A(APPEN0(V,Y1).Y)AISSUBSUB(ZI,Z)A(FLAG.1)) 
v (FLAG:0) 

WHILE (XI /ZERO) A (Yl /ZERO) A (FLAG= 1) DO 
BEGIN 
X2:- TSUBSTUWXD.Z); 
Y2:= TSUBST(HD(Y1),Z); 
IF ISVAR(X2) THEN     BEGIN  IF ISVAR(Y2) 

THEN   BEGIN   IF (X2/Y2) 
THEN Z:.COMP(Z>X2,Y2) 

END 
ELSE   BEGIN  IF OCCUR(X21Y2) THEN FLAC:.0 

ELSE Z:.COMP|Z,X2,Y2) 
END 

END 
ELSE BEGIN  IF ISVAR(Y2) 

THEN   BEGIN  IF OCCUR(Y21X2) THEN FLAG !«0 
ELSE Z:=COMP(Z,Y21X2) 

END 
ELSE   BEGIN  IF FNLT(X2)«FNLT(Y2) 

THEr'   BEGIN  UNIFY(TERMS|X2),TERMS(Y2),Z,Z2,FLAG); 
IF FLACl THEN Z:.22 

END 
ELSE FLAG:=0 

END 
END; 

U ^RCONSdJ.HDiXI)); V :=RCONS(V,HD(Yl)); 
X1:=TL(X]); YI:rTL(YI); 

END; 7. End of WHILE body 1. 

IF (X J/ZERO) v (YI/ZERO)  THEN FLAG:=0 
END; 7. Proctdure body 7. 

Figure 8: Third version with documentation 
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FOR UNIFY THERE ARE I 1 VERIFICATION CONDITIONS. HER!7 IS ONE OF THEM: 

« 4 
(-XI »ZERO & -YI=ZERO & FLAG* I & 

ISSUB(Z)AlSTERMLIST(U)AlSTERMLIST(V)AlSTEPMLIST(Xl)AlSTERMLISfvYl)ASUBS* 
T(U,Z)=SUBST(V1Z)AAPPEND(U,XI)^XAAPPEND(V1Y1)=YAISSUBSUB(ZI 2)AF.AG«IVFLAG«0 

-» ISTERMLIST(XI) & -XhZERO & (ISTERM(HD(XI)) 
-» ISTERM(HD(XI))& ISSUnm & (ISTERM(TSUDST(HD(X1),Z)) 
-♦ ISTERMLIST(YI) A -YhZERO A (I5TFPM(HD(Y1)) 
-» ISTERM(HD(YI))& ISSUO(Z) A (IGT:RM(TSUBST(HD(Y1),Z)) 
-» (-ISVAR(TSUn5T(HD(YI))Z)) « -ISVAR(TSUBST(HD(X 1 l.Z)) 
-♦ ISTERM(TSUOST(Mü(Yi),Z))Ä <ISVAR(TSUBST(HO<Yl),!))« 

(ISCONST(FNLT(TSU,rlST(HD(Y | ),Z))) 

-» ISTERM(TSU13ST(H1MXI).Z))Ä 'ISVAR(TSUBST(HD(X1 ),Z)) i 
(ISCONST(FNLT{TSUL3ST(HD(X 1 ),2))) 

1 (FNLT(TSUB«;T(HD(XI),Z))^FNLT(TSUDST(HD(Y1).Z)) 

-» ISTERM(TSUÜST(HD(Y1 ),Z)) Ä 'ISVAR(TSUBST(HD(YI ),Z)) i 
(ISTFRMLISTiTERMSITSUDSTdlDiYD.Z))) 

-» ISTERM(T5UBST(HD(X1),Z))& 'ISVAR(TSUBST(HD(X1 j.Z)) » 
(ISTERMLI3T(TEPMS(TSUD5T(HD(X1),Z))) 

-• ISTERMLIST(TERMS(TSUBST(HD(X1)1Z))) & ISTERMLIST(TERMS{TSUBST(HD(YI j.Z))). 
ISSUB(Z) & (FLAG^I & 

ISSUB(Z2"P)ASUOST(TERMS(TSUBST(HD(Xi),Z)))Z2«2)SSUBST{TERMS(«' 
TSUBST(HD(y|)1Z))1Z2«2)AlSSUBSUB(Z,Z2«2)AFLAG=lvFLAG»0 

-» ISTERMLISTIXl)«, -XUZERO& (ISTERM(HD(X1)) 
-» ISTERMLIST(U) & ISTERM(HD(XI)) & (ISTERMLIST(RCONS(U,HD(XI))) 
-» ISTERMLIST(Y1)& ^\-7ZRO& (ISTERM(HD(Y1)) 
-» ISTERMLIST(V) & ISTERM(HD(YI)) & (ISTERMLISTIRCONS^.HDCYl))) 
-» ISTERMLIST{X1)& 'X]=ZER0 4 (ISTERMLIST(TL(XI)) 
-» ISTER^LIST(YI)& -YI=ZERO& (ISTERMLIST(TL(YI)) 

-► ISSUB(Z2"2)AISTERMLIST(RC0NS(U,HD(X1)))AISTERMLIST(RC0NS(V,HD(Y1)))A 
ISTERMLIST(TL(X I ))AISTERMLIST(TL(YI ))A 

SUBST(RCQnS(U.Hn(XI)),Z2«2)=SUBST(RCONS(V,HD(Yl)),Z2«2)A 
APPEND(KCONS(U,HD(Xl)),TL(Xi))=XA 
APF'ENDiRCONSIV.HDtYl »JKYl ))=YA 

ISSIIBSUB(ZI1Z2«2)AFLAG=1VFLAG=0)))))))))»))))))? 

Ficjurc 0: One of ihr unsiinplificd VC's for the third version 
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GOALFILE 

AXIOM ISTERMLIST(Zr90) » TRUE; 

AXIOM ISSUB(ZERO; - TRUE; 

AXIOM ISSNGLESUB(ZERü) - TRUE; 

GOAL ISSINGLESUB(«S) SUB (S^PAIRisX.asYllAlSVARIfflXlAlSTERMIaYJA-OCCUR^X.BY);.; 

PASCAL 

DEFFUN MKTERM(X:CONST;Y:TERMLIST):TERM; 
ENTRY ISCONST(X) A ISTERMLIST(Y); EXIT  ISTERM(MKTERM); 

DEFFUN FNLT(X:TERM):CONST; 
ENTRY ISTERM(X) A ^ISVAR(X);     EXIT   ISCONST(FNLT); 

DEFFUN TERMS(X:TERM):TERMLIS"1; 
ENTRY ISTERM(X) A -ISVAR(X);     EXIT  ISTERMLIST(TERMS); 

DEFFUN CONS(X:TERM; L:TL"RMLIST):TERMLIST; 
ENTRY ISTERM(X)AISTERMLI5T(L);   EXIT   ISTERMLIST(CONS); 

DEFFUN HD(L:TERMLIST):TERM; 
ENTRY ISTERMLIST(L)AML=ZERO);   EXIT   ISTERM(HD); 

DEFFUN TL(L:TERMLIST):TERMLIST; 
ENTRY ISTERMLIST(L)A^(L=ZERO);   EXIT   ISTERMLIST(TL); 

DEFFUN MKSUB(S:SUB; SI :SINGLESUB):SUB; 
ENTRY ISSUDIS)AISSINGLESUD(SI); EXIT ISSUG(MKSUB); 

DEFFUN LAST(S:SUB):SINGLESUB; 
ENTRY ISSUB(S); 

DEFFUN REST{S:SUB):SUB; 
ENTRY ISSUB(S); 

DEFFUN VAR(S:SINr,LESUB):VAR; 
ENTRY ISSINGLESUB(S); 

EXIT ISSINGLE, UB(LAST); 

EXIT ISSUB(RES.); 

EXIT ISVAR(VAR); 

DEFFUN TERM(S:SINGLESUB):TERM; 
ENTRY ISSINGLESUD(5);    EXIT   ISTCRM(TERW); 

DEFFUN PAIR(X:VAR; Y:TERM):PAIR; 
ENTRY ISVAR(X)AISTERM(Y); EXIT ISPAIR(PAIR); 

Figure 10 (continued) 

  J --.--^l           ^^^yyy^^^y^^gg. 
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FUNCTION SUBST(L:TERMLIST; S:SUB);TERMLIST; 
ENTRY ISTERMLIST(L) A ISSUO(S); 
EXIT ISTERMLIST(SUBST); 

BEGIN 
IF (S-2ERO) THEN SUBST:=L 
ELSE SUBST:.SINGLESUBST{SUBST(L1REST(3)),LAST(S)); 

END; 

FUNCTION TSUBST(X:TERM; S:SUB):TERM; 
ENTRY ISTERM(X) A ISSUB(S); 
EXIT   ISTERM(TSUBST); 

BEGIN 
IF (S = ZERO) THEN TSUBST-X 
ELSE TSUBST:=SINGLETSU3ST(TSUDST(X,REST(S))ILAST(S)); 

END; 

38 

FUNCTION SINGLESUBST(L:TERMLISTr S:SINGL£SUB):TERMLIST; 
ENTRY ISTERMLIST(L) A ISSINGLESUDiS); 
EXIT   ISTERMLIST(SiNGLESUDST); 

BEGIN 
IF (L=ZERO) THEN SINGLESUBSf^ZERO 
ELSE SINGLESUBST:=CONS(SINGLET5UBST(HD(L)1S)lSINGLESUBST(TL(L),S)) 

END; 

FUNCTION SINGLETSUBST(T:TERM; 3:SINf .ESUB):TERM; 
ENTRY ISTERM(T) A ISSINGLESUB(S); 
EXIT   ISTERM(SINGLETSUOST); 

BEGIN 
IF ISVAR(T) THEN BEGIN IF (T=VAR(S)) 

THEN SINGLETSUBST :- TERM(S) 
ELSE SINGLETSUBST :• T 

END 
ELSE SINGLETSUBST :» MKTERMIFNLTIT), SINGLESUBST(TERMS(T), S)) 
END; 

FUNCTION COMP(S:SUB; XtVAR; YsTERMJtSUB; 
ENTRY iSSUB(S)AlSVAR(X)AlSTERM(Y)A-OCCüR(X1Y); 
EXIT   ISSUB(COMP); 

BEGIN   COMPr-MKSUBCS.PAIRIX.Y));  END; 

Figure 10: scconH level functions and goalfile 

— ^-—.—^ .......   ..  
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t Program lor vorifyinß 

ISSUB(S1)AISSINGLESUB(S2)AISTERMUST{L) 

=>[TSUBST(L.MKSUD(SI.S2))=SINGLETSUBST(TSUBST(LSI)S2n 
Program body of TSUBST w.lh new onlry/ox.t conditions 7. 

PASCAL 

ENTRY ISSUa(S)A(S=MKSUB(SI,S2))AlSTEPM(X)- 
EXIT (TSUBST8SINGLETSUBST(TSUBST(X,SI ),S2)); 

AXIOM LAST(MKSUB(««S)oSI))«Sl: 
AXIOM RESTIMKSUBIraS.oSD^S; 
AXIOM {ZER0.MKSUB{«SI.«S2))«FALSE; 

BEGIN 

IF^ZERO) THEN TSUBST:EX ELSE TSUBST:.SINGLETSUBST(TSUBST(X.REST(S)).LAST{S)), 

FOR THE MAIN PROGRAM THERE ARE 2 VERIFICATION CONOITiONS 

• 1 
(S-ZERO & ISSUB(S) 6, S=MKSUB(S11S2) * ISTERM|X) 
-» XrSINGLETSUBSTCTSUOSTCX.Sl )1S2!) 

• 2 

('S«ZERO & ISSUB(S) * S-MKSUB(SI1S2) & ISTERM(X) 

-»SINGLETSUBST(TSUBST(X,REST(S))1LAST(S)).SINGLETSUBST(TSUBST(X,SI),S2)) 

AFTER SOME SIMPLIFICATiQN, YOU CAN GET 

• 1    TRUE 
• 2   TRUE 

Figure II: lemma abet goal 15 

■—       ■■— ^-„^--^_-JM»^^„_M-J„M—^„^»^—„^.^—. .— ..^—, .—.. ___M—-.«^M 
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GOALFILE 

7. Axioms dodnmf» the data typer. and brfsic (unctions 7, 
7    1 7. AXIOM ISTERMLIST(ZERO) « TRUE; 
7.   2 7 AXIOM ISSUB(ZERO)..TRUE; 

7. Axiom', de'.cnbmi; proportioi o( '.ubtunctions 7. 
7. 3 7. AXIOM APPEND(ZERO,"S)"S; 
7 4 7. AXIOM APPEND(nS,ZERO)-S; 
7. 5 7. AXIOM APPEND(RCONS(roS,HD(oT)),TL(«T))«APPEND(S,T)i 
7 6 7 AXIOM IF ISVAR(X)AISVAR(Y)A(Y/X) THEN   -0CCUR(oX,«\/HTRUE; 
7. 13 7 AXIOM TSUBST(niX,ZERO)-X; 
7. 14 7 AXIOM IF -'IVARIX) THEN ■'ISVAR(TSUBST(«IX,«9S))HTRUE; 

7. Goals (or MGU 7. 

7. 26 7. GOAL Mr.U(RCONS(T5X 1 ,*)X2).RC0NS(*9Y1 ,^2), SC0MP(oSl,aS2)) 
SUB MGU(XI,YI,SI)AMGU(TSUÜST(X2)SI)1TSUBST(Y2,S1)1S2); 

7. 27 7. GOAL MGU(RCONS(rcXi ,.T)X2),RC0NS(.T)YI.3Y2), MKSU3(«»Sl,aS2)) 
SUB MGU(X 1 .''l .Sl )AMGU(TSUüST(X2,S1 ),TSUBST(Y21SI ),S2); 

7. 28 7. GOAL MGU(RCONS(oXI .^X2),RCONS(«YI)nY2),raSl) 
SUB MGU(XI1YI1S1)A(TSUBST(X21S1).TSUBST(Y2)SI)); 

7 29A 7. GOAL MGU(nX,fDY,PAIR(^X,roY))    SUB ISVAR{X)AISTERM(Y)A-OCCUR(X,Y); 

7 29B 7 GOAL MGUtoX.nY.PAIRtraY.QX))    SUB ISVAR(Y)AlSTERM|X)A-OCCUR(y,X); 

7. 30 7 GOAL MGUCuX.aY.^S)    SUD (FNLT(X)aFNLT(Y))AMGU(TERMS(X)1TERMS(Y)lS); 

7. 31 7. AXIOM MGU(ZERO,ZERO,ZERO)-TRUE; 

7. Goals (or NOTUNIF 7 

7. 32 7 GOAL NOTUNIF(TOX,WY) 

SUB ISVAR(X)AISTERM(V)A-ISVAR(Y)AOCCUR(X.Y), 

ISTERM(X)AI<;TFRM(Y)A-ISVAR(X)A^ISVAR(Y)A -(FNLTiXj.FNLKY)), 
(FNLr(X).FNLT(Y))ANOTUNir{TERMS(X),TERMS(Y)); 

7. 33 7. GOAL NOTUN!F(PCONS{r3X I ,-iX2),RC0NS(nYI ,r3Y2)) 
SUB MGU(X1,YI,*)S) A NOTUrjir(TSUG5T(X2,'!3S),TSllBST(Y?,»S))l 

MGUOti.VI.MS) A NOTUNIF(TSUBST(Y21(raS),TSUBST(X21oS5) 
NOTUNIF(X2.Y2); 

7. 34 7. GOAL N0TUNIF{APPEND(^X1, oX2)1A?PEND(«Yl(oY2)) 
SUB (X2=ZERO)A-(Y2=ZERO)AMGü(X1,Y1)QS), 

(Y2rZER0)A.(X2=ZER0)AMCU(Xl,YI,«S), 
N0TUNIF(XI,Y1); 

Figure 14 (continued) 
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41 APPENDIX 

PASCAL 

DEFFUN HD(L:TFPMLI5T):TEPM;       FNTRY ISTERMLIST(L)A^L'ZERO);   EXIT   ISTERM(HD); 

DEFFUN TL(L:TERMLIST):TEPMLI5T;    ENTRY I5TERMLIST(L)A-.(L=2ERO);    EXIT   ISTERMLIST(TL); 

DEFFUN RCONS(L;TEPMLI?T: X:TERM):TER>-<HST; 
ENTRY ISTERMLI5T(L)AISTERM(X);   EXIT ISTERMLIST(RCONS); 

DEFFUN TERMS(X:TERM):TERMLIST;   ENTRY ISTERM(X)AHSVAR(X);        EXIT ISTERMLIST(TERMS); 

DEFFUN FNLT(X:TERM):CONST;        ENTRY ISTERM(X)A^SVAR(X);        EXIT ISCONST(FNLT); 

DEFFUN TSUBST(X:TERM:S:SUD):TERM;    ENTRY I5TERM(X)AISSUB(S);    EXIT ISTERM(TSUBST); 

DEFFUN MKSUB(S:SUB; SltSINGlESU8hSUB| 
ENTRY !SSUB(S)AISSINGLESüU(S1); EXIT ISSUBIWKSUB); 

DEFFUN PAIR(X:VAR; Y:TEPM):SINGLESüB; 
ENTRY ISVAR(X)AISTERM'V)A-OCCUR(X,Y);   EXIT ISSINGLESUB(PAIR); 

DEFFUN SCOMP(Sl1S2:SÜO):f JB;     EMTHV ISSUB(S1 )AlSSUB(S2)i        EXIT ISSUB(SCOWP); 

DEFFUN OCCUR(X:VAR; Y:TERM):BCJLEAN;     ENTRY ISVAR(X)AISTERMIY);    EXIT ISBOOLEAN(OCCUR); 

FifHn 14 (continued) 
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